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SECIlON 1 

JNTRODUCI'ION 

This report presents the results of Task 5 for contract NAS 1- 18004, sponsored by the 

NASA Langley Research Center. The purpose of this work has been to develop and demonstrate 

methods of design and analysis of control-element failure detection and isolation (FDI) algorithms 

for restructurable flight control systems. This work was coupled with contract NAS1-17411 in 

which control restructuring methods were developed. Several reports document these efforts 

([ 11-[3]*). Reference [ 13 details automatic control design procedures for the restructurable control 

problem and reference [2] details the FDI methods that play a key role in enabling the effective- 

ness of the control redesign procedures. Reference [3] documents a preliminary integration of the 

control redesign and FDI concepts into Fortran-77 subroutine that were then used as the flight 

control module in NASA's B-737 simulation. These efforts all dealt with operation of the aircraft 

at a single flight condition. Promising results at a single flight condition lead to the effort reported 

herein, in which expanded envelopes of operation are considered. 

The purpose of this effort was to develop and demonstrate concepts for expanding the 

envelope of the FDI algorithms that detect and isolate "aircraft-path" failures. An "aircraft path" 

failure is defined as a control element failure based on the analytic redundancy contained in the 

models and measurements associated with force and moment relationships. These failures are the 

most difficult to detect and isolate since analytical relationships between dissimilar sensors 

("analytic-redundancy") must be used. In particular, aerodynamic force and moment balance 

equations that relate measurements of control deflection, angular rates, and relative wind velocities 

to translational and rotational accelerations are used to compare actual aircraft motion with expected 

motion and to detect and identify peculiarities of any discrepancy. Because aircraft-path FDI must 

- -  
- - _  - 

References are indicated by numbers in square brackets; the list appears at the end of the main body of this 
report. 
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rely on force and moment balance models, there is a natural tradeoff between the accuracy of these 

models and the ability to detect and isolate failures. For single flight condition operation, we 

developed design and analysis methods to deal with this "robustness" problem. When the 

departure from the single flight condition is significant, however, it is not possible to obtain ade- 

quate performance (i.e., both low false alarm and missed detection probabilities) without some 

form of adaptation. This report deals with those adaptations. 

While previous work was applied to models of the B-737 aircraft, this work was applied to 

a high performance fighter aircraft model (the AFTI/F-16) since such aircraft are likely to have 

more stringent restructurable control requirements [l]. The basic methods, however, an5 valid for 

transport as well as fighter aircraft. 

1.1 SUMMARY 

All FDI methods can be decomposed into two major elements; residual generation and 

decision-making. In [2], we explicitly considered the design of each of these elements separately 

in order to better understand and compensate for the effects of many non-idealized factors. This 

effort deals with adaptation mechanisms for expanded envelope operation in the same way. 

For residual generation, adaptation requirements are interpreted as the need for accurate, 

large-motion models, over a broad range of velocity and altitude conditions (in-flight model identi- 

fication was initially considered as a method of residual adaptation but was rejected for several rea- 

sons; see Section 2). For decision-making, adaptation may require modifications to the filtering 

operations, thresholds, and projection vectors that define the various hypothesis tests performed in 

the decision mechanism. 

Methods of obtaining and evaluating residual generation and decisionmaking designs in an 

expanded envelope context have been developed for this project. In addition, we have demon- 

strated the application of the residual generation ideas to a high-performance fighter by developing 

"adaptive" and single flight condition residuals for the AFTI/F-16 and simulating their behavior 

under a variety of maneuvers using the results of NASA's F-16 simulation. 
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SECI'ION 2 

DESIGN METHODS FOR EXPANDED ENVELOPE OPERATION 
RESIDUAL GENERATION 

In the next two sections we discuss several issues that must be addressed in expanding 

the envelope of operation of the FDI algorithm developed in [2]. Although we consider this 

algorithm explicitly, many of these issues apply to any FDI algorithm. Residual generation and 

decision mechanism issues are addressed separately (residual generation in this section and 

decisionmaking in Section 3), although, as often stated, the performance capabilities of one 

affects the performance requirements of the other. For both FDI processes we discuss when 

the need for envelope-expanding adaptation arises and determine the factors that might affect 

this need. We then present various methods that can be used in the design of adaptation 

mechanisms. 

2.1 DESIGN ISSUES 

The generation of good residuals for use in any decision making process requires, 

ultimately, high fidelity models of the aircraft. Although the concept of "adaptation" is 

sometimes taken to mean on-line "learning" (of the aircraft models for example), for our 

purposes the term adaptation refers to a model "scheduling" concept. The primary reason for 

this view is the inherent problems associated with learning types of adaptation within an FDI 

context; the problem being the adaptation (of aircraft models in our case) to the effects (of the 

failure) that need to be detected. While such adaptation could ultimately provide the 

information required for reconfiguration (e.g., new aircraft models), it obscures the detection 

problem, which must make high fidelity decisions in very short amounts of time (an order of - _  
- - -  - magnitude faster than what is usually required for accurate model adaptation [4]). 
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The attainment of truly high fidelity aircraft models over a wide range of operating 

conditions (various dynamic pressure and maneuver conditions) is a difficult problem and, in 

principle, could involve excessive physical modeling of static and dynamic aerodynamic 

behavior as well as validation with wind tunnel and flight test results. Even with such an 

excessive effort, variations amongst aircraft of the same type and variations of a single aircraft 

over time are typically ignored. However, the accuracy requirements far the control element 

FDI problem are such that simple models based on static aircraft characteristics will be 

sufficient for nearly all flight conditions 

airflow conditions ) adequate compensation of the decision making process can be made. 

where they are not (e.g., during transienddynamic 

The keys to the development of adequate aircraft models over a wide range of operating 

conditions are as follows; 

1. Good physical understanding of aerodynamic effects, and 

2. A means of assessing the quality of any proposed model. 

The need for physical intuition comes about because of the size and number of effects 

that must be modeled. For example, a single residual may be a function of 5 to 10 

(measurable) variables. To model the relationship between the variables (e.g., with a power 

series) without some knowledge of how these variables interact and what types of 

nonlinearities are possible would require an unrealistic number of terms (many of which may 

end up being insignificant) and a possible over-fitting of the model, [5]. Thus, physical 

intuition allows proper model forms to be chosen more easily. For this project, adequate time 

was not available for a full investigation of nonlinear and full-envelope modeling issues. 

Therefore, our approach was to examine and compare a variety of nonlinear aerodynamic 

models and deduce as much as possible about the possible nonlinearities and interactions 

amongst variables. 
-. 

Once a model is (or models are) chosen, evaluation in terms that relate directly to the 

residual generation process is necessary. This is at least as important if not more important, 

than developing a good model since accurate characterization of uncertainty leads to accurate 

- ~ 
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performance prediction. As discussed in [2], performance of FDI algorithms depends , in part, 

on the power spectral density of the residuals. This PSD is used to design and evaluate the 

decision mechanism in terms of detectable and isolatable failure magnitudes. Thus, the ultimate 

measure of model quality is the performance of the decision mechanism that uses the 

corresponding model for residual generation. While this is the ultimate measure, its 

computation could be quite involved; including, as it does, a complete decisionmaking design. 

Therefore, simpler measures are sought. For this project, we will assume that the filtering 

requirements for each statistical test in the decision mechanism are the same, and can be 

determined (roughly) before residual generation models are formed. Furthermore, we will 

again assume that two types of errors arise, low-frequency "in-band" emrs that are unaffected 

by filtering, and sensor noise, whose effect is reduced by filtering. As a result, the use of a 

predicted value for the variance of each residual after filtering is proposed as a measure of 

model quality.' 

The three primary issues that must be considered in building an aircraft model for 

residual generation are: 

1. Model fidelity, 

2. Model simplicity, and 

3.  The ability to predict model accuracy in terms of actual aircraft performance. 

Most aircraft development programs go through several phases of modeling in which 

higher-fidelity models are built. While it is tempting to use the latest (and presumably best) 

models for residual generation, the final model that comes out of a full-scale flight test tends to 

be very complex (including table look-up functions and flight-test correction factors). For 

residual generation, the simplification of such a model is required for real time operation. Of 

course, with simplification comes errors. Thus, in characterizing the quality of the models 

inaccuracies between the best model and its simplifcation, as well as inaccuracies between the 

best model and the real aircraft, should be taken into account. The former characterization 

_ _  
- - . 
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occurs naturally in the model simplification process. The latter issue is more difficult and 

needs to be addressed in future work. 

The simplification of a high fidelity aerodynamic aircraft model for residual generation 

purposes is essentially the same as any model simplification or data-analysis procedure. The 

six steps in this process are: 

1. Determination of potential nonlinearities and interactions from knowledge of 

2. Generation of aerodynamic coefficient values as a function of important 

3. Plotting of this data to examine anticipated nonlinearities and interactions, 

4. Proposal of a series of analytic model forms for use in residual generation, 

5 .  Fitting of each model to the data using a regression analysis, and 

6 .  Selection of the best model according to a prediction of the variance of the fdtered 

Steps 4-6 can be accomplished in a variety of ways (e.g., "all-subset regression", 

"backward elimination", and "stepwise regression"; see [5]).  In all of these methods, it is 

assumed that the dependent variable (the aerodynamic coefficient) is a s u m  of terms involving 

the independent variables. The possible terms must be spelled out ahead of time and is the 

most difficult part of any of these methods. This is where steps 1 and 3 (especially plotting 

the data) are needed. For example, potential nonlinear effects that would be expected [e.g., see 

aerodynamic concepts, 

"independent" (and measurable) variables, 
I - 

residual. 

[6])  include: 
1 

1. Lift-Curve slope for wings varying as 

2. Increases in a (below ac.it.) can increase the roll, yaw, and sideslip effectiveness 
dm- 

on lateral coefficients. 

3. Reductions in control effectiveness can be expected at high u angles of attack. 

4. Effectiveness of trailing edge surfaces are proportional to angles of attack 

5. Drag is affected by lift (i.e., drag polars). 

6 .  Small effects of sideslip on lift can be expected. 

1 
I 
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7. Various control nonlinearities are likely. 

8. Trailing edge wing surfaces are likely to interact with the effects of horizontal tail 

9. Pitch effectiveness can be proportional to higher powers of lift (e.g., CL2, U3). 

surfaces . 

10. Angle-of-attack rate can affect longitudinal coefficients. 

1 1. The effectiveness of trailing-edge surfaces are proportional to 

Various specific effects for individual models can also be derived. For example, for the 

1 

dm. 

rolling moment model, we would expect an iteration between a and p since the effect of p on 

roll is dependent on wing and horizontal-tail lift, which is in turn dependent on a. The 

magnitude of the interaction depends on the amount of wing sweep and dihedral/anhedral of the 

wings and horizontal tail. The lift on the wings and horizontal-tail are also influenced by 

deflection of the flaperons, thereby giving rise to a possible interaction between p and flaperon 

deflection. Nonlinearities in p might be expected at high sideslip angles as a result of the 

transition from laminar to turbulent flow over the fuselage. Finally, interactions between p and 

canard deflection might be expected since the snowplow configuration presents an 

asymmetrical profile to side wind components and the location of the canards is such that 

rolling moments may result. 

2.2 DESIGN METHODS 

As discussed above, the development of high-fidelity, full-envelope, aero-models 

requires that all important nonlinearities be modeled. We have divided these nonlinear effects 

into two categories; 1) large-amplitude effects, and 2) flight-condition effects. The large- 

amplitude effects are due to large perturbational changes in aircraft velocities (magnitude and 

direction of translational and rotational velocities) at a single flipht-condition (Mach, altitude). 

Large-amplitude effects require nonlinear models mainly because of the changes in lift 

distributions on the various components (wings, body, horizontal tail, etc.) of the aircraft (they 
- _  

. - 
do not all change equally). Changing flight-conditions cause changes in the "scaling" of the 

nondimensional coefficients (linearly with dynamic pressure; hence a nonlinear multiplicative 
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model) as well as changes in the nondimensional coefficients themselves. The latter effect is 

due to changing lift characteristics as described in [ 11 and due to changes in the geometry of the 

analytical models for large-amplitude effects. Expansion of the envelope to incorporate a wider 

I 
1 
1 
1 

aircraft due to static flex characteristics. For this project, we will concentrate on developing 

range of flight-conditions will take the form of a scheduling of the "parameters" of several 

single flight-condition models. 

As discussed previously, the first step in developing models for residual generation is 

to determine the form of the models from basic aerodynamic principles, Towards this end, two 

forms have been developed. The fist  form is based on a simple generalization of the so-called 

"panel" or "component build-up" method. It involves a simple model for the lift and drag due 

to each component (wings, body, horizontal tail, etc.) of the aircraft as a function of the local 
relative wind vector, the panel's "configuration" (e.g., changing camber due to flaps), and 

possible changes in the relative wind vector due to interference effects. The second form is a 

generalization of the linear models commonly used in flight control design and is therefore 

called a quasi-linear method. In this modelling method, the nondimensional "derivatives" are 

functions of variables that would be expected to cause them to change for physical reasons. 

Both methods are discussed below. 

2.2.1 Panel Method Models 

The basic idea of the panel method is that each panel or component of the aircraft 

generates a lift and drag vector whose magnitude and direction are largely determined by the 

magnitude and direction of the local relative wind. This is a common method of aircraft 

modelling [l], [2] and we use it here to provide a simple model form whose specific 

parameters can be identified from an aero-package. 

Let Li and Di represent the (dimensional) lift and drag force vectors (expressed in a 

body-referenced coordinate system) on the i-th panel of the aircraft. We assume [6] that each 

vector is applied to the aircraft at some average location, ri, that the drag vector is applied 

8 
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parallel to the relative wind vector, Vi, and the lift vector is orthogonal to Vi and a unit span 

vector, e$, for the i-th panel. From these assumptions it is easy to see that each panel 

generates a portion of the total force and moment on the aircraft (at the center of gravity). The 

total body-referenced force on the aircraft is 

F = C  Li+Di 
1 

The total moment on the aircraft is 

M = C  ri x L i + r i  x D j  
1 

The magnitude of lift on each panel is modeled as a function of Vi, an interference variable Oi 

(e.g., downwash angle for the horizontal tail), and any configuration variables (e.g., flap 

deflection for the wings, rudder deflection for the vertical tail panel). For a wide range of local 

angles of attack, each panel can be adequately modeled by [6] 

where Vi is the local forward velocity (i.e., the projection of Vi onto a unit chord-vector, ef, 

for the i-th panel), Wi is the local downward velocity (i.e., the projection of Vi onto a unit 

vector that is orthogonal to ef and eib ), &O is the basic panel lift coefficient for the desired 

flight condition, Wi/Ui is an approximation to the local angle of attack, p is the atmospheric 

density, and 6i is a "configuration" variable (such as trailinfleading edge wing flaps). The 

interference variable, Oi , can also be a function of other parameters and is the least understood 

part of the panel model. Also, note that for some panels (e.g., canards) the projections of Vi 

onto span- and chord- referenced directions will change (e.g., as a function of canard 

deflection) since these vectors can be changed. 

The magnitude of the drag due to each panel is then assumed to be computed from the . 
drag-polar relationship [6] 

9 TR-378 



(2-4) lDil = DiO + KDL ILiP 

The local relative wind vector, Vi is computed from [7] 

(2-5) V i = V m  + o x 1, 

where V, is the overall or average relative wind vector on the aircraft, and o is the body- 

referenced angular velocity vector. 

These equations reduce the modeling problem to one of identifying a few basic 

quantities: ri, L i O ,  Kai, K& , ef, and eib . Knowledge of the form of these equations 

should also allow large reductions in the amount of data needed to identify the desired 

quantities. For example, the values of bo ,  G i ,  K6i can be determined solely from force 

relationships at o = 0. Unfortunately, there are some drawbacks to this approach. First, the 

resulting model is not particularly efficient computationally. Many "small" effects that perhaps 

could be ignored are modeled through these relationships. It is also possible that the addition 

of "small" effects can cause deterioration of the quality of the resulting residuals, due to the 

addition of sensor noise. These situations are particularly difficult to identify with this model. 

Also, while the assumption about the directions of lift and drag on each panel are fairly 

standard, it is not clear how accurate this assumption will be in terms of the residual generation 

problem. Finally, the model ignores some potentially important effects such as the movement 

of the center of pressure (essentially ri) at a single flight condition. For these reasons, this 

method is not considered further. 

2.2.2 Quasi-Linear Models 

This method of modeling is also common in flight control applications. The basic idea 

is to assume a model for the non-dimensional coefficients of the form; 

1 
I 
I 
I 
I 
1 
I 
1 
1 
1 
1 
1 
1 
I 
I 
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where 5 = x, y, z, 1, m, or n, the vi are the measurable quantities that are likely to affect Ce 

and the Cevi are modeled as functions of the vi likely to affect them (still at a single flight 

condition). We use physical knowledge about aerodynamics to postulate the important terms in 

the above equation as well as the quantities that are likely to affect the "derivatives", Ccvi. For 

example, for the F- 16 we have developed the roll-coefficient model 

where 

a = aircraft angle of attack, 

p = aircraft sideslip angle, 

dfc = collective flaperon deflection, 

dfa = asymmetric (differential) flaperon deflection, 

dhta = asymmetric horizontal tail deflection, 

dvc = parallelhertical canard deflection, 

dsp = snowplow/horizontal canard deflection, 

dr = rudder deflection, 

- _  The terms in the roll-coefficient expansion are the same as those that appear in a linear model. 

The variation of the derivatives with other variables takes into account various physical effects. 
- - -  . 
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For example, C1 - p varies with a because C1 - p is partly due to wing sweep. The effect of 

wing sweep, however, increases as the wing lift increases [6],  which increases with a. Note 

that the anhedral of the vertical tail and canards also contribute to Cl_p with opposite sign (to 

the sweep effect). This effect also increases with lift and hence a. The overall relationship 

between C1 p and a is indeterminate since the relative contributions of these physical 

phenomena are unknown. However, it is clear that C1 - p could be a function of a and hence 

we should attempt to characterize it for residual generation. Similarly, C1 - p is a function of 

(dfc) because of its effect on the lift of the wing, thereby affecting the wing sweep effect. The 

dependence on (dsp) is due to the asymmetric profile to side wind components presented by the 

(dsp) configuration and the location of the canards below the x body axis; and the dependence 

on p indicates that we expect decreases in C1 - p at large sideslip angles due to separation (i.e., 

departure from laminar flow). 

- 

The advantage of the quasi-linear approach is that the resulting models are significantly 

simpler than any that could be proposed without knowledge of important aerodynamic effects. 

This approach also reduces the effort associated with identifying the parmeters of the model 

since each term can be identified independently (i.e., set all variables to zero except the one 

corresponding to the derivative being examined). For example, Fig. 2-1 shows a plot of 

C1-p vs. p for various values of a. This plot suggests that for small sideslip angles, a model 

of the form C1 - p = K ( a - a. )2 may be appropriate. For larger values of p, some 

nonlinearity in p needs to be considered. Also, the effects of dfc and dsp need to be examined. 

Because each derivative is only a function of a few variables, the analysis of important 

nonlinearities and interactions amongst variables is substantially easier than if we attempted to 

formulate a model without any predetermined structure such as the quasi-linear form. It should 

also be clear that the analysis of "small" effects and their ultimate impact on the residual 

generation process is simpler using the quasi-linear model. 

I 
I 
I 
s 
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Figure 2-la. Croll vs. Beta vs. Alpha. 
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Figure 2-lb. Croll vs. Alpha vs. Beta (b = .04 Rad.). 
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2.2.3 Regression Analysis for "Linear" Models 

The quasi-linear models described in subsection 2.2.2 are frequently reduced to models 

that are linear in an unknown set of parameters (e.g., a polynomial model [8]; note that linearity 

in the "independent" variables of the model is 

iterative regression analyses have been developed ( stepwise, backward elimination, etc., see 

[5]).  With such iterative methods, models are iteratively proposed and evaluated until the 

"best" model is obtained. The sophistication of these methods involves the use of calculations 

as part of each regression that help select the next course of action (as opposed to more ggneral 

search strategies that require full model fitting for alternative steps). 

implied). For such models, sophisticated 

Some controversy as to the definition of a "best" model exists, however. This 

controversy stems from the fact that the ultimate use of the model to be found varies fi-om 

application to application. Some general rules are applicable in many circumstances. For 

example, to paraphrase [8], if two models have similar error characteristics, the one with the 

fewer terns is better. For the residual generation problem, this makes sense since extra terms 

imply extra error due to sensor noise (when residuals are actually formed). However, since 

this is the primary reason for rejecting models with large terms, it is desirable to formulate and 

solve a regression problem that deals with the sensor noise problem directly. This is done in 

the following. 

The regression problem we wish to solve assumes that the residual equation is given 

1 
1 
I 
I 
I 
I 
1 
1 
1 
I 
1 

where the Xim's are terns that involve measurable quantities (including nonlinear terms), the 

ails are coefficients to be determined, and ym is the measurement (of acceleration) that is to be I 
- - = -  I predicted. For example, the model for lateral acceleration might be expressed as : . 

(2-9) 

14 

TR-378 I 



The residual produced within the FDI system from this equation will be nonzero during 

unfailed conditions due to model error and due to sensor noise. 

We now define sensor disturbances that are used to predict the size of the effect of 

sensor errors on the residuals. Let, 

and, 

(2- loa) 

(2-lob) 

The characteristics of the terms ny and nx - i are determined by the properties of the individual 

sensors used in the residual generation process. In Eq. 2-9 the lateral acceleration noise nay as 

well as noises on sensors of p, a, and p are considered independent zero-mean white Gaussian 

processes. The characteristics of ny and the corresponding n, - i 's are then uniquely 

determined. In this example, they are all trivial except for the a p  term which has 

nap = @na + a n P  + nanp) . (2-1 1) 

Note that while the individual sensor errors may be assumed to be independent, there may still 

be correlation between n, - i and n x j  due to nonlinearities in the measurable quantities. 

Using the above definitions, the covariance of the residual is expressed as : 

where, at = ( al, a2, . . . ), ~t = ( xi, x2,. . . 1, oY2 = E { ny2}, and [Clij = E{ nx-i n x j  1. 

Now, the first term in Eq. 2-12 represents the modeling e m r  between the quasi-linear model 

and the actual aircraft. If we assume that this error is statistically similar to the model 

simplification error, then Eq. 2-12 can be rewritten as, 

15 TR-378 



where N = number of data points, Iy]i = the i-th sample of y from the aerodata package, and 

m i j  = i-th sample of Xj from the aeredata. NOW, since 2 can be calculated from knowledge I 
I of sensor noises and the nonlinearities involved in each Xi , E( vt V) can be minimized by 

choice of a through solution of the linear equation 

(2-14) 

Equation 2-14 is just a simple modifcation of the standard regression equations (C = 0 ) and I 
I 
I 

can easily be solved. Unfortunately, unlike the standard equations there appears at this time to 

be no method for solution that avoids the computation of X . Therefore, care is needed to 

ensure accurate solutions. 

2.3 SUMMARY 

In this section we have discussed several issues that must be addressed in the 

development of an expanded-envelope residual generator. The adaptation mechanism we 

considered is a model scheduling mechanism as opposed to a model "learning" mechanism to 

avoid the problem of false adaptation to the failures we wish to detect. Effects that need to be 

considered include both large-amplitude maneuvers and changes due to Mach and altitude. The 

effect of large maneuvers at a single flight condition involves nonlinearities and interactions that 

are normally not considered in a linear aerodynamic model (e.g., for control design). 

Significant changes may also occur as a function of Mach and altitude because of the flexibility 

of the aircraft and the effect on load distributions due to flight condition. Qualitative prediction 

of the large maneuver effects is possible through physical arguments involving standard 

I 
I 
1 
I 
I 
I 

- - = -  1 
I 

aerodynamic concepts. The so-called "static flexibility" effects are less understood and, 

therefore, require explicit scheduling using look-up tables. 

For large maneuver effects, the scheduling is accomplished "implicitly" by construction - _  

of an analytic nonlinear model. This model is derived as a simplification to a mature aero 

package, although advanced identification techniques could be directly applied to flight test data 

16 
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as well. The development of a useful nonlinear model for the residual generation process 

should incorporate physical understanding of aerodynamics (to avoid complex and/or overfitted 

models) and must consider the effects of sensor noise in determining the utility of individual 

elements of the model. Physical understanding led to a "panel method" model format. This 

format, however, had several drawbacks and led to the consideration of a quasi-linear model. 

This model assumes the fom of a linear aerodynamic model, but with "derivatives" that are 

modeled as a function of other variables. The selection of which variables influence which 

"derivatives" is then justified from a physical standpoint, When the quasi-linear model is 

further expanded into a "parameter-linear" format, regression analysis can be used to estimate 

the best set of parameten. We then derived a modification to standard regression methods that 

explicitly deal with sensor errors in determining optimal residual generation parameters. 
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SECTION3 

DESIGN METHODS FOR EXPANDED ENVELOPE OPERATION 
DECISIONMAKING 

In this section, we discuss the issues that must be addressed in the design of an 

expanded-envelope decisionmaking process for the FDI algorithm of [2] and develop methods 

that can be used in the design and evaluation process. As was the case with single flight 

condition designs, we concentrate on the problem of system robustness by adapting a deeision 

structure based on design models of residual behavior and select parameters to optimize 

performance with respect to appropriate truth models. 

For this work, we assume that the structure of the decision process has been 

determined and that we desire an adaptation mechanism for the parameters of this process. 

Furthermore, we shall assume that the temporal characteristics of the residuals do not change 

so that the filtering requirements for all statistical tests can be determined a priori. Thus, 

referring to the decision process described in [2], methods for scheduling the projections and 

thresholds of the various statistical tests within that process axe sought. 

3.1 DESIGN ISSUES 

The decision mechanism developed in [2] utilizes knowledge about the unfailed and 

failed characteristics of the residuals in order to make accurate and timely failure decisions. 

"Adaptation" is required for full envelope operation because the statistical characteristics of the 

residuals (failed and unfailed) change over the flight envelope and because the design of a 

decision mechanism for "worst-case" scenarios is not adequate (either too low detection 

probabilities for acceptable false alarm rates, or too high false alarm rates for acceptable -_ 
. - -  - detection performance). 

ia 
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As in the design of decision mechanisms at a single flight condition, adaptation is based 

on knowledge about the statistical characteristics of the residuals (under both failed and 

unfailed operation). As in [2], we assert that a statistical characterization of the residuals under 

no-fail conditions is sufficient for evaluating failure detection performance. That is, let F denote 

a vector containing parameters whose changing values cause significant changes in the 

statistical characteristics of the residuals (it is not a trivial problem to determine what F consists 

of and/or provide measures of its components for use in adaptation; these issues are discussed 

at the end of this subsection). The six dimensional vector of residuals, v, is modeled as (see 

[2], subsection 5.1.2); 

H, (no failure) : v(t) = n(t; F) (3-1) 

Hi (i-th failure) : V(t) = n(t; F) + q(F) fi(t) (3-2) 

The notation n(t; F) denotes a stochastic process that represents various kinds of errors 

(modeling, sensor, etc.) whose power spectral density (PSD) is a function of F. The notation 

is somewhat misleading since F changes as a function of time, thereby making the notion that 

the residual PSD is a function of F incorrect. However, if F changes slowly with respect to the 

FDI time scale this characterization is valid for design (this is not always the case; e.g., 

increases in low frequency error at high angular rates; thus caution must be used in 

interpretation of performance results). 

In the design of the single flight condition decision mechanism, the statistical charac- 

teristics of the residual errors under no-failure conditions and the direction of the failures in 

residual space were mapped onto decisionmaking parameters using a well defied design 

methodology. Equations 3-1 and 3-2 imply that the first step in adaptive decisionmaking 

design is the characterization of the statistics of the unfailed residual errors n(t; F) and the 

characterization of the failure directions 

section). 

II Ci(F) II (defined as e o  in the remainder of this - _  
. - -  

I 
I 
I 
1 
I 
1 
I 
I 
I 
1 
1 
I 
1 
I 
I 
I 
I 
I 
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I 
I 
I 
1 
I 
1 
I 
1 
I 
I 
I 
c 
I 
1 
1 

m 
Several factors affect e o  and the statistics of n(t; F). For example, situations that 

result in variations in the statistics of n(t; F) include : 

1. The effect of sensor noise on the broadband energy content of the residuals is 
modulated by the size of the aerodynamic derivatives and the value of Q. This is 
because the residual model contains products of derivatives, tj and sensor 
measurements. At higher tj, and for larger derivatives, the variance of the white 
noise portion of the residuals would be expected to increase. 

2. Scale factor emrs and sensor misalignments result in low-frequency or in-band 
errors. The size of this effect is also dependent on the size of appropriate 
derivatives and Q with larger values implying larger residual variances. 
Misalignment errors are also a function of the size of maneuvers. 

in the derivative factor, then larger low-frequency emrs are expected for large 
maneuvers. This includes maneuvers due to pilot commands, and large departures 
from steady flight due to disturbances (e.g., turbulence). 

4. The residual model is based on static airflow and therefore errors during transients 
are expected. The errors are transient in nature, but could be considered low- 
frequency with respect to the FDI bandwidth. 

3. When model error is adequately characterized by an error (additive m multiplisative) 

Situations that result in variations in e o  include, in principle, anything that can cause 

the control derivatives, Ci Q, to change. However, there are cases in which C@) is not 

constant, but where the failure directions remain fixed. In these cases, adaptation is 

unnecessary. A two-dimensional example is given below. 

Let a two-dimensional residual, under failed conditions (no uncertainty), be modeled 

(3-2b) 

where df and dm are the actual and measured control element values and gf and gm are actual 

(failed) and modeled control nonlinearities. The failure direction is defrned by tan-'( vi/ v2) 

and is a constant when -_  
. -: 

c l  (g l f  - glm) / c2 ( g2f - g2m) = constant (3-3) 
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For example, gif = gim = Kip) + g(d; F) satisfies Eq. 3-3. Thus, when control nonlinearities 

are the same in all axes, the failure directions remain constant and adaptation is not r e q d  

A more problematic situation arises when the i-th failure direction changes as a function 

of the i-th control element deflection (Le., one component of F is 

adaptation in this project refers to a scheduling of design parameters as a function of 

measurable or estimable quantities. Now, if the failure directi0nSrca.n not be estimated or 

measured, adaptation is not possible. This is pnxisely the case when the i-th failure direction 

changes as a function of the i-th control element deflection. To see this, consider Eq. 3-2 

). Recall that the term 

again. Now, unless the functional form of the control derivative vectors satisfies Eq. 3-3, the 

left hand side of Eq. 3-3 (the failure direction) will be a function of the unmeasurable quantity 

df. If this effect is significant, and the performance obtained by assuming it is negligible is not 

adequate, then decision mechanism concepts that are radically different than those described so 

far may be required (e.g., more explicit failure-mode modeling, or the use of probe or dither 

signals for enhancing identifiability). 

The extent of this situation was briefly investigated using the AFTI-F-16 model 

provided by NASA. Figures 3-1 through 3-6 are plots of the aerodynamic coefficients for 

NASA's F-16 model at h = 15,000 ft and M = 0.6 versus the deflection of a single control 

element (dfl, dhtl, and dr) with all other variables (other control elements, a, p, and angular 

rates) set to zero . These figures show that in all but a few cases, control effectiveness is linear 

for a substantial portion of the deflection range. The exceptions include C, for all control 

elements (as one would expect from physical principles; i.e., drag > 0) and the pitching 

moment (C,) due to flaperon deflection (dfl). Since, from past experience, C, carries little 

information for detecting and isolating these control surfaces, there is little lost in eliminating 

Cx from consideration. Thus, the only problematic situation is the Cm vs. dfl nonlinearity. 

Figure 3-7 shows a plot of the 

dhtl. This plot shows that the failure direction for dfl changes with dfl deflection, and that this 

change interacts with dhtl deflection. Thus, we can not make use of the pitching moment 

direction-cosine as a function of dfl for various values of - 

1 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 

- _  1 
- = -  I 

1 
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residual for detecting or isolating dfl without further analysis of the impact of any simplifying 

assumptions that would need to be made (e.g., assuming Cm vs dfl is linear, or zero). I 
I 
I 
I 

The above discussions have outlined some of the factors that might affect the statistical 

characteristics of n(t; F) and the failure directions e@. The components of F should therefore 

be based on these factors either directly (e.g., by scheduling with ij, p, a, etc.) or indirectly. 

Although time did not permit a complete investigation of the appropriate composition of F for 

the AFTI-F-16, some general ideas can be developed. First, changes in the failure direction, 

e(F), can only occur as a function of those factors that also affect the corresponding control 

"derivatives" in a quasi-linear residual generation model. Therefore, the residual generation 

model provides a basis for identifying these factors. Plots of direction cosines vs. various 

factors can point to those factors that most influence failure directions and measurements of 

these factors may then be used to schedule those decisionmaking parameters that are affected 

by e(F). Secondly, some of the changes in the statistics of n(t; F), may also be derived by 

reference to the residual generation model. For example, dynamic pressure clearly has a direct I 
- = -  I 
-_  

influence on the size of the impact on additive sensor errors and should therefore be one factor 

upon which to schedule those decisionmaking parameters that are influenced by n(t; F) 

. 
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characteristics. Similarly, significant changes in the size of the "derivatives" in a quasi-linear 

model may also influence the extent of the impact of additive sensor errors on residual errors. 

Some effects, however, are not easily characterized through reference to the residual generation 

model. Primarily, these are the effects that are modulated by the size of maneuvers (e.g., aero- 

model error, scale-factor error, misalignment error). One way to overcome the difficulty 

associated with characterization of these types of errors is through an empirical approach. In 

such an approach, a high fidelity simulation or data from a flight test vehicle would be 

processed to generate residuals (as we did in [2]). Flight condition elements (components of 

F) might include, in addition to the obvious factors such as q, a specification of the size of the 

"inputs" (pilot inputs and wind disturbance) to the aircraft. Measures such as R M S  stick 

deflection and RMS a-vane and p-vane movement (over an appropriate window) could then 

serve as "measurable" factors upon which scheduling may be based. Statistical 

chkacterizations of residual error can be computed from observations of the residuals and the 

parameters of such a characterization correlated with the RMS input measures. 

Having characterized both e(F) and the statistics of n(t; E), we can then concentrate on 

the mapping from the statistics of n(t;F) and e@) to the decisionmaking parameters. If a simple 

analytic mapping were available, the design process would now be complete (with the analytic 

calculations done on-line as a function of measured/estimated values of F). However, the 

mapping from the statistics of n(t;F) and e(F) to the decisionmaking parameters is sufficiently 

complex to require the consideration of methods of simplification that directly produce decision 

parameters as a function of F. Analytic methods for performing this part of the design process 

are considered in the next subsection. 

3.2 DESIGN METHODS 

In this subsection, we develop several methods for simplifying the relationships -_  
- -.. 

between a set of flight condition parameters, F, and the parameters of the decisionmaking 

process. In reference to the decision process of [2], the decisionmaking parameters that must 
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1 be specified include projection vectors and thresholds for the various hypothesis tests that must 

I 
1 
I 
I 
I 
I 

be performed. In principle, the filtering requirements for each test might also be specifid, 

however, for this project, we have assumed that these requirements will not change over the 

flight envelope and therefore concentrate on threshold selection and projection vector design. 

In the following, a general design procedure is developed in which various design calculations 

are made. These calculations utilize many of the techniques discussed in [2] and will be 

referred to throughout this subsection. Methods for performing the relevant calculations are 

then provided for fixed sample size tests. Methods for designing sequential tests are the same 

for projection vector design; however, as discussed in [2], sequential test threshold design 

must use heuristic methods. 

3.2.1 General Methodology 

The main goal of this methodology is to develop a mapping from F to the 

decisionmaking parameters (thresholds and projection vectors) that is neither overly complex 

so as to require extensive amounts of computer time and/or memory nor too simple such that 

performance may be sacrificed. In general, threshold and projection vector selection are treated 

in a similar manner to the single flight condition design process. Having specified the filtering 

requirements of a particular test, selection of "optimal" (or near-optimal) projection vectors is 

performed. This selection process uses the n(t; F) and e(F) characterizations as the "truth- 

model" upon which performance is to be optimized. Having chosen the projection vectors, 

thresholds are then chosen to achieve acceptable decision-error characteristics. 

The general design process attempts to strike a balance between the extremes of 

oversimplification and excessive complexity. At the simple end of this spectrum is a design 

that ignores all changes in n(t; F) and e(F) and employs a single set of (best) parameters. 

Should such a design achieve acceptable performance levels it is clearly the prefemd solution. 

On the other end of the complexity spectrum is a design that specifies parameters at each of 

many values of F (i.e., many single flight condition designs) and performs interpolation of 
- = -  I 
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these values when the actual F lies between the scheduling points. This method comes closest 

to optimal extended-envelope design, but will m i s s  the fact that many of the schedules may be 

unnecessary. Thus, we seek a design method that can strike a balance between the simple 

"fixed-mrameter" solution and the complex "variable-parameter" solution to come up with a 

partial "fixed/variable parameter" design. The key question to be answered in the development 

of a furdvariable design is then "Which parameters can be fixed and which must vary to 

achieve adequate performance?" 

Figure 3-8 shows an overview of the general design process. The process involves 

four basic steps progressing from the simplest design (fured parameters) to the most reasonable 

tradeoff between performance and complexity in a partially fixdvariable design. Evaluations 

are made throughout the method to assess the impacts of simplifications in terms of 

performance reduction with respect to both the performance goals and the variable parameter 

design. 

The fmt step in the process is to design and evaluate a fxed parameter system. Varia- 

tions in e@?) and n(t; F) are taken into account in selecting a single best set of parameters for all 

values of F. Evaluations with respect to performance averaged over all values of F are made 

and compared to the design goals. If detection of important failures within reasonable amounts 

- 

of time without too many false alarms can be achieved, then the fmed parameter system may be 

used and no scheduling is required. However, if the performance tradeoffs are unacceptable 

(e.g., thresholds set to avoid false alarms result in inadequate detection capability), continued 

development is needed. 

The second step is the development of a completely variable design. In this step, a new 

set of parameters at every value of F (although F may be continuous valued, we assume 

continuity of its influence on n(t; F) and e(F) so that samples of F at appropriately spaced 

points will provide an adequate approximation to the continuous relationship between .F and the 
-_  
- ~ 

design parameters) is computed . Evaluation of this design is made and used as a bound to 

performance levels achievable in any fured/variable designs. 
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making parameters that must vary as a function F to achieve adequate performance. This step 

is only necessitated if on-line data restrictions are such that storage of decisionmaking parame- 

ters at the various design points (Fk> (and subsequent interpolation between points) is not pos- 

sible. As in the case of residual generation models, this last step involves model selection and 

regression analysis to fit a closed form approximation to the desired relationship. Note also 

that such a methodology can also be used to reduce the number of points in a look-up and 

interpolate model. 

The general methodology has several computational requirements both for design and 

evaluation. In the next four subsections, details of these calculations are provided. First, 

methods of evaluation for any decisionmaking design are treated, and then methods for 

optimizing performance over the entire envelope are discussed. 

3.2.2 Evaluation Methods 

This section presents an evaluation method that can be used in the general design 

method discussed in the previous subsection. Many of the detailed calculations are similar to 

The third step is taken if the variable design in step 2 is of sufficient complexity to 

warrant simplifications (note that no performance improvements over the step 2 design are 

possible with this procedure). In this step, the variations in the design parameters are 

examined and those variations that are deemed insignificant are selected as fmed parameters and 

a fxed/variable design is performed. The resulting design is evaluated and compared to the 

variable-parameter design and the design requirements to determine: a) if the design is 

acceptable (in terms of performance and simplicity), and b) if the selection of fixed parameters 

should be extended or another set chosen. The evaluation must occur because of the fact that 

what appear to be smal l  variations in qualitative terms when selecting fixed parameters m y  

actually represent important variations in terms of performance (this is due to the unequal 

scaling of the residuals). 

The last step involves simplification of the relationship between F and those decision- 
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those reported in [2] and proofs are therefore not provided in this report. Furthermore, we 

treat only fixed-sample size hypothesis tests (Le., trigger tests). The design of sequential tests 

(verify and isolate tests) must follow ad-hoc procedures as in [2]; however, these procedures 

are typically based on fixed-sample size test designs so that the presentation below can be 

easily adapted. We also only deal with detection tests in the following (trigger and verify 

tests). Isolation tests can be treated in a similar manner as was done in [2]. 

For this development, we assume that the residual vector, under no-failure (Ho), at the 

k-th flight condition, Fk, is modeled by the residual error "noise" n(t; Fk), while during 

failure of the i-th control element (Hi) at the k-th flight condition the residual can be modeled by 

v = Ci (k).f. + n (t; Fd (3-4) 

(Note that Eq. 3-4 assumes a constant failure signature. Methods for dealing with other 

temporal characteristics are derived in [2], Section 4). The hypothesis tests that need to be 

designed and evaluated all take the form 

Decide Hi if s(k) > t(k) 

Decide I&, if s(k) < t(k) (3-5) 

where 

and 
vf = filtered version of v. 

(We use the notation "x(k)" to indicate dependence of x on Fk). 

Given the statistical characteristics of n(t; Fk), the covariance matrix of vf , & (k), can be 

derived. Thus, under no-failure, s is zero mean with variance given by 

o;(k) = P (k) Cf(k) P(k) (3-6) * - = -  I 
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Under Hi, the statistic, s, has a nonzero mean and variance given by 

- si(k)=fP'(k) Ci(k) 

2 2 2 
(~ i (k)  = Oo(k) = (T (k) 

Now, the above equations give the (assumed Gaussian) probability density function for the 

statistic, s, at each flight condition. For evaluation, however, we need to summarize 

performance over all flight conditions. For this work, we propose to use average (over all 

flight conditions) values of relevant performance measures such as detection probability for a 

given failure signature, minimally detectable fault-signature for a given level of detection and 

false alarm probability. Alternate measures (to averages over all flight conditions) include the 

worst-case values or squared-mean-minus-variance values (for those measures that should be 

maximized) and mean square values (for those that should be minimized). For average values 

the relevant equations are; 

Average - "Signal-To-Noise" 

d2 = c 7Ckd2 (k) 
k 

where 

Average Minimal-Detectable Failure 

where 

and, 
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Average Probability of False Alarm 

I 
I 

(3-1 1) 

I 
I 

In the above, Q represents a weight associated with the k-th flight condition, Q-'(C) is the 

inverse of the Gaussian e m r  function, and Pd is the desired detection probability. Note that 

Eq. 3-9 does not include evaluation of the selected t(k) since it presumes that t(k) is selected to 

realize a tradeoff between false alarms and missed detections that is specified by d2(k). 

3.2.3 VariableDesign Method 

The simplest design procedure is that used in the variable design. This method is 

tantamount to several single flight condition designs; one for each value of Fk. Thus the 

methods discussed in [2] are used at each Fk. The relevant equations are: 

(3-12) 

(3-13) 1 
These values can then be used in Eq. 3-9 or 3-10 to evaluate the design. I 
3.2.4 Fixed Parameter Design Method I 

I 
I 

The next simplest design procedure is the fNed-parameter system. This method mes to 

select a single optimal set of values for all flight conditions. Thus, P(k) = P and t(k) = t for all 

k. To choose P, we would like to optimize d2 (as in [23) as given by Eq. 3-9. Rewriting 

Eq. 3-9 to highlight full the dependence on P we have 

_ _  
(3-14) 

- - :- I 
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Unfortunately, unless W k )  is a constant, the optimal solution of Eq. 3-14 for P is not closed- 

form, [9]. Thus an alternate performance measure is desired. One way to solve this problem 

is to use a modification to Eq. 3-14 that represents the ratio of average mean of s (over all 

flight conditions) to average variance of s, namely, 

PT R, P 
T -  

P C f P  

where 

It is easy to show that this measure is maximized by 

1 - _  
P = C f  - 2  v 

(3-15) 

(3-16) 

(3-17) 

(3-18) 

where V is the eigenvector corresponding to the smallest eigenvalue of the matrix 

[--; c, Rc --+I . 

Another way to solve the problem is to treat F as a random variable taking on values Fk with 

probability nk . Then, approximate Gaussians are used to model the weighted sum of 

Gaussians densities that characterizes s over the entire flight envelope, for each hypothesis 

(failed and unfailed). Even if the Gaussian densities with the same mean and variance are 

used, the result is another optimization problem that has no closed form solution. Therefore, 

- _  this method is not considered further, 

Now, to select the single best threshold, we try to achieve low false alarms at all flight - = - 

conditions. Thus choosing t to minimize Eq. 3- 1 1 would be desired. Unfortunately, the 
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solution can not be expressed in closed form (even if standard approximations are made to the 

error function) and is, therefore, deemed inappropriate for this effort. If we use the average 

variance to characterize the variations under all flight conditions, however, a reasonable 

selection of t  can be made from 

3.2.5 

(3-19) 

Fiied Plus Variable Design Method 

In this design stage, we wish to fix some of the parameters of the decisionmaking 

process as a function of flight condition, Fk, and allow others to vary. Such a design allows 

compromises between performance and complexity to be made. For this development we will 

refer to Pf and Pv(k) as the fixed and variable parts of the projection vector, P(k), respectively 

and similarly for tf and tv(k). 

Threshold setting requires definition of P(k) and is straightforward. For those Fk that 

require different thresholds, Eq. 3-13 is used. Those Fk for which a single threshold is 

desired can be treated using Eq. 3-19, where the sum over k represents only those flight 

conditions for which a single threshold is desired. Deciding which flight conditions need a 

separate threshold, and which can be grouped together with a single flight condition is not 

mated in any detail in this report. However, we observe that a single threshold will be 

sufficient for all those values of F (and P(k) ) that result in variances for s that are nearly equal. 

Choosing fiied and variable portions of P requires, as in the fixed design method, a 

measure of overall performance that is both relevant and functionally related to Pv and Pf in 

such a way that either closed form solutions or straightforward optimization procedures can be 

used ( although elaborate solution methods may be available, it is not deemed of sufficient 

importance to the overall design problem to warrant the attendant development effort). To 
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illustrate the idea of fixed plus variable design, consider a case in which &(k) is constant and 

equal to the identity matrix. In this case we have, 

2 
T v  T f  

d2 (k) = [pv ci (k) + pf ci (k)] - (3-20) 

2 To maximize d2= EXkd (K) requires that we first maximize each d(k) resulting in optimal 

values of Pv(k) as a function Pf. Then we can solve for the optimal Pf , (this is because the 

Pv(k)'s affect only d(k) ). In a three residual system, for example, dQ is 

2 
d(kI2 = [P 1 [CI 1 + p2 [CI 2 + p 3 [CI 31 (3-21) 

In Eq. 3-21, the notation [C]i denotes the i-th element of the vector Ci(k) and the dependence 

of the elements of the [C]i on Fk has been suppressed, and Pi is the i-th element of P(k). Now 

suppose we allow Pi and P2 to vary with k and require P3 to be constant, Then maximizing 

Eq. 3-21 by choice of P1 and P2 (with the usual I 1  P I 1  = 1 restriction) gives, 

(3-22a) 

(3-225 b) 

(We only need to maximize PVT CiV since d2(k) is monotonic in this term). Substituting into 

Eq. 3-21 gives, 

r 1 1 l2 
d2 (k) = [[l-P;)' (C: +C$' + P3 C3 1 

Taking the average over all flight conditions gives an equation for P3 of the form 

37 
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To maximize Eq. 3-24 the relevant gradient equation is 

1 1 

(3-24) 

(3-25) 

This equation is a transcendental one in P3 and can be solved by standard iterative methods 

(e.g., Newton's method). 

Now, when W k )  is not the identity at all flight conditions, the situation is substantially 

more complex. Closed forms for this general case were not derived for this project, and so an 

ad-hoc procedure is now proposed. Suppose that instead of choosing the optimal value of Pf 

we select Pf to be some specific value (e.g., zero or the average over all values in a variable- 

parameter design). Given this selection we would like to optimize Eq. 3-9 through choice of 

P,(k). However, a closed form solution to this problem is not immediately obvious. 

Therefore, we choose P,(k) to optimze a d2 metric in the reduced subspace of residuals 

corresponding to the variable elements of P. I€ we let E: (k) be the covariance of the filtered - 

residuals in this subspace, then the solution is 

-1 v 
P, (k> - Cf (k) Ci (k> 

and the result is normalized so that P has unit norm. 

3.3 SUMMARY 

(3-27) 

In this section we have discussed various issues in t,e development of an adaptive 

decision mechanism (DM) for control element FDI. We assumed that the structure of the 

decision process was predetermined and that only the parameters of this process are to be 

"adapted." As in Section 2, the adaptation mechanism is a "scheduling" concept in which the 

decisionmaking parameters are changed as a function of "on-line" measurable flight-condition 

quantities. We also assumed that the temporal characteristics &e., spectral shape) of the 

-. 

. I- 
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residuals are constant so that filtering requirements for each hypothesis test do not need to be 

scheduled. 

Scheduling of DM parameters is potentially required whenever changes to the 

covariance of the filtered residuals occur and whenever changes to the failure directions occur. 

The former requires changes to both thresholds and projection vectors while the latter only 

requires changes to projection vectors. Although failure directions change whenever the 

control derivatives change, if these changes effect all derivatives in a similar manner, then the 

failure directions remain constant. When all derivatives are not affected in a similar manner, 

scheduling of the projection vectors must occur. However, this is only possible if the 

parameters affecting the failure directions are measurable. Such is not the case when a failure 

direction is affected by its corresponding control element value. Should this occur (as it does 

for the flaperons on the F-16), care must be taken in the design of tests for flaperon failures 

(particularly in using the pitching-moment residual). 

The measurable quantities upon which scheduling must be based include dynamic 

pressure, roll rate, and angle of attack, since their values has a direct impact on the sensor noise 

component of the residuals. However, other effects, such as those that are modulated by 

maneuver size are more difficult to describe. One way to establish scheduling requirements for 

these effects is to perform an empirical study (using either a high-fidelity simulation or flight- 

tests) and to schedule parameters as a function of the "size" of aircraft "inputs." 

Once the flight-condition parameters are defined, the DM design goal becomes one of 

balancing complexity and performance of the scheduling mechanism. The simplest DM design 

is a fixed-parameter solution and should be used if its performance is adequate. At the other 

extreme is a DM design in which all parameters must be scheduled. In between these extremes 

a partial fixed/variable design allows for some parameters to be fixed and some to vary as a 

function of flight condition. Design and evaluation methods were given for all three DM 

design concepts. 

_ _  
. -_ - 
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SECTION 4 

RESIDUAL GENERATION FOR THE AFTI/F'-16 

4.0 INTRODUCTION 

A key component to developing an aimaft-path FDI algorithm for expanded envelopes 

of operation is a residual generation process that is adaptable over a large range of flight 

conditions. Such a residual generation process must provide accurate estimates of the aircraft 

during normal flight and also during large scale maneuvers over a wide range of velocitiei and 

altitudes. To achieve a high level of accuracy in the prediction of the aircraft behavior, it is 

imperative that a high fidelity model of the aircraft be synthesized. 

The purpose of this section is to build an expanded envelope, nonlinear residual 

generator and demonstrate its improvement over the single flight condition, linear residual 

generator. This process will be demonstated for a NASA AFlT/F-16. The general design 

methods and selected approach to the residual generation process were described in Section 2. 

The general method that will be used includes modeling the aircraft at various fxed flight 

conditions, but over a broad range of motions. Several models, developed in this manner but 

at different flight conditions, will be scheduled to account for the full operating range of the 

aircraft. (For this demonstration, however, only one model at a single flight condition was 

developed.) The selected approach for developing high fidelity models utilizes a nonlinear/ 

quasi-linear model (basically a polynomial of nonlinear functions, each of which can be 

reduced to a summation of "coeffcents" times "predictors") and a regression analysis based on 

that model, as detailed in subsections 2.2.2 and 2.2.3. 

Due to the limitations in scope of this project, several assumptions and simplifications _ _  
were made. One of these simplifications, as mentioned above, is the development of only one 

nonlineadquasi-linear model instead of the many that are required for full adaptability of the 

- - = - 
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residual generator. It was also decided to model only the roll moment axis, with the assump- 

tion that any results obtained could be similarly extended to any of the aircraft's other five 

degrees of motion. Other assumptions were made to reduce the complexity of the modeling 

process, such as simplifications to the sensor noise model, limitations placed on control 

deflections, etc., which are all explained in more detail in the sections below. 

Despite these simplifications to the residual generation design, promising results were 

obtained from the test runs. It was clearly shown that a quasi-linear approach in formulating a 

nonlinear model resulted in much more accurate residuals than the standard linear model. In 

addition, the sensor noise computation method proved to be a workable concept despite lew 

enough sensor noise levels that warranted exclusion of the actual use of the concept. The 

regression analysis showed that further reduction of the number of terms may be plausible, 

given that effectively no accuracy was lost in the reduction from 31 predictor terms to 22 

predictor terms. Finally, avenues exist for further refinement through actual implementation of 

multiple flight condition models (which was not realized due to time constraints) and modeling 

of predictor terms as piecewise-linear models. 

4.1 MODELDEWLOPME" 

One of the primary goals in the development of the residual generation process is to 

determine the terms for inclusion in the quasi-linear equations of motion, or more specifically, 

the equation for the coefficient of rolling moment. These terms, if chosen judiciously, will 

provide a far better representation of aircraft behavior in multiple-flight condition sorties than 

the standard linear model. Until now, there had been no set method for choosing these terms. 

The method that is presented here for choosing the terms is based on the nonlinear/quasi-linear 

model detailed in subsection 2.2.2. Subsection 4.1.1 presents the approach that was taken to 

select the terms, including a description of the quasi-linear model and an outline of the steps in 

the prescribed method. Subsection 4.1.2 discusses the application to an F-16 of the method 

developed in the previous section, covering the selection of the potential predictor terms, and 

1 
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presents the frnal terms that were chosen for the residual generation models. For such a 

method to be developed, many auxiliary issues also must be addressed. These include the 

development of a sensor noise model and computational isssues, such as sampling. These 

two topics are discussed in subsections 4.1.3 and 4.1.4. 

4.1.1 TheAppmch 

The method used to develop an accurate model of the aircraft incorporates aspects of the 

nonlinear/quasi-linear model as described in subsection 2.2.2, thus, a good understanding of 

the implementation of this model is necessary. A brief overview is provided here. 

The quasi-linear model represents an aerodynamic, non-dimensional coefficient <in this 

specific case, the rolling moment coefficient, Q) as a summation of nonlinear functions 

multiplied by a corresponding independent variable, namely, 

where v i  are the measurable quantities that are likely to affect Cl and each Clvi is a nonlinear 

function, the derivative of C1 with respect to vi . The above equation is a more specific version 

of Eq. 2-6. This polynomial can be simplified further if each term of the polynomial is 

expanded into a summation of coefficients multiplied by a reduced term (a predictor) such that, 

(4-2) 

where x1,x2, x3, etc., are arbitrary classes of "causal" variables of the nonlinear function,f; 

v i  are the measurable quantities mentioned above; and gj (Xj) is an n-th order polynomial in x 

(n to be determined later), that is, the contribution of the derivative , Clwi , due to xj. The 
_ _  order of the polynomial g(Xi) is determined by Xi's influence on the corresponding derivative. - - -  
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I 
A high order polynomial implies that all lower order variables are also r e q d  Thus, the 

quasi-linear model can be concisely summarized as a polynomial, 

where Xi" is an n-th ordered variable, called the "causal" variable, such that if Xi" exists, then 

all lower order variables of Xi also exist, and ai is the "regression coefficient". 

Clearly, given the arbitrary nature of Xi, it would be extremely difficult to try all 

combinations of possible independent variables of indeterminable order with each derivative. 

Thus a method was required to select the candidate nonlinear terms, that is, the nonlinear - 
derivatives. From these candidate terms, the proper predictors (defined as the combination of 

xivi ) and their complementary coefficients can be deduced. 

The choice of the quasi-linear candidate terms was accomplished by a deliberate 

approach that also required intuitive reasoning. This approach requires intuitive reasoning to 

create an original list of potential terms, which 

and studies of sensitivity plots. These terms are reduced to potential predictor terms. A 

backward elimination regression analysis is then used to eliminate these potential predictor 

terms in the model one at a time. This elimination process is based on a figure of merit (FOM) 

of the predicted residual error variance. 

selected based on aircraft dynamic properties 

The following steps outline the method that was developed to characterize the behavior 

of the AFTI/F-16: 

1. Select causal variables - A general form of the aircraft equations of motion is taken as 

a starting point. Using the quasi-linear model approach, one variant of the aircraft equation of 

motion is an unrestrictive equation, such as equation (4-1) above. As noted in the equations 

describing the quasi-linear model (equations 4-1 to 4-3), the "predictor" is defined as consisting 

of two independent variables, w and x. In equation 4-2, the variable yf is combined into the 

derivative Cpp which is a function of many independent variables x. These x variables are 

called "causal" variables, that is, they cause the derivatives, C1+ to vary. Although both the 

- = -  I 
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causal variable and the independent variable, y, are predictor-type variables (and thus, a case 

could be made to form the derivative CiX instead of Cl$, a causal variable is differentiated from 

y in that the causal variable is a variable that is not traditionally associated with predicting the 

dependent variable in question, i.e., the non-dimensional coefficient, Q. The independent vari- 

able will always be the more influential of the two, the one commonly associated with the depen- 

dent variable. For example, if C1p is a function of a, then a would be referred to as the causal 

variable, p would be referred to as the independent variable, y, (since Qp is a common deriva- 

tive whereas Cia is much less common) and Q would be referred to as the dependent value. 

The candidate nonlinear terms are drawn from physical explanations of the aimaft 

behavior. For each candidate term, a reasonable and workable list of causal variables are 

selected. This can be based solely on dynamic or static characteristics of the aircraft, or it may 

be empirically gathered from flight data. From this reduced set of nonlinear functions, simpli- 

fications can be made to the polynomial, as in equation (4-2), to arrive at the set of potential 

"predictors", or more accurately, "the class of predictors" (since for each class of predictors, 

Xinvi", many combinations of predictors may exist). Each potential predictor's composition 

varies from linear terms (where no causal variable exists), to cross terms (where the causal 

variable is different from the independent variable, v), to single variable, higher order terms 

(where the causal variable is the same as the independent variable,y). The terminology used 

in the quasi-linear model development is summarized in the partial example below: 

~ p r e T  ~ 

predictor 

C1 
T I- T T 

non-dimensional regression causal independent 
aerodynamic coefficient coefficient variable variable 

45 
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2. Plot derivative sensitivities to causal variables - For each suspected class of 

predictors, a plot of variations in the derivative over different values of the causal variables is I 
1 
I 

made. For example, if collective flap deflections are suspected of affecting the coefficient of 

rolling moment due to p, then plots would be made of the coefficient of rolling moment due to 

p at several collective flap deflections. 

3. Determine predictor terms - Each plot is analyzed to determine if the suspected 

causal variable actually changes the derivative value in question. If the plot shows a constant 

derivative value for all causal values, then the suspected class of predictors is removed from 

consideration. If, however, the plot varies, then the highest ordered effect of the causal 
I 
I 
I 

variable must be determined through inspection of the plot. It is assumed that for a predictor 

whose causal variable was assigned order n, that predictors with causal variables of less than n 

will naturally exist. 

I From analysis of the plots, a list can be generated to separate all suspected terms into 

either large effects, small effects, or no effect. 

4. Perform backward elimination regression analysis - With the predictors deduced 

I 
I 

from the above steps, a backward elimination regression analysis is implemented. Briefly, the 

backward elimination starts out by attempting to fit all predictors to the dependent values. After 

each regression step, the least influential predictor term is removed and the regression is 

I 
repeated. This will continue until a manageable number of terms remain. One criterion used 

for deciding the number of terms to keep is the requirement that the sample variance of the 

nonlinear model have significantly better results than the linear model. 

I 
- - = -  I 

4.1.2 Application to F-16 Rolling Moment Model 

This section describes the actual procedure used in developing the m - 1 6  nonlinear - _  

model. Since we will only concentrate on the rolling moment for demonstrating the 

effectiveness of an extended envelope residual generator, only the L-axis predictor terms are 
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eventually derived. The step numbers listed below correspond to the steps itemized in the 

previous section. 

Step 1 - Select causal variables 

The first step to creating a nonlinear model for the F-16 is to take a general form of the 

non-dimensional rolling moment coefficient and select from this equation the set of possible 

candidate nonlinear terms. Preferably, most of the candidate terms chosen will be deduced 

either directly from intrinsic qualities of the aircraft or from sets of terms used in other studies. 

For this specific task, terms were drawn from both sources. 

An initial list of candidate terms was first compiled based on the theories of aircraft 

dynamics and control as detailed in Roskam [6] and McRuer [ 101. From these sources, the 

rolling moment aerodynamic coefficient can be summarized in quasi-linear form as: 

(4-5) 

The following gives a short explanation for the various causal variables of the nonlinear 

terms of the equation. The angle of attack affects all the derivatives because of its influence on 

the effective lift of the wings, which grows with increasing alpha below separation. The 

collective flap deflection is a factor in many of the derivatives due to its contribution to the 

altering of the effective camber of the wing. The tail derivatives are additionally affected by 

downwash caused by the flap deflections. The P derivative is also affected by the canard 

deflection, which adds an asymmetrical side wind component due to its location. 

Each nonlinear derivative was then reduced to two-variable cross term predictors with -_  
. - -  

indeterminable order. For example, 
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Of course, interactions involving more than two variables exist physically, but, as the results 

later will show, very accurate modeling can be attained by using only two variable cross-term 

predictors. This assumption, in effect, simplifies the model and limits the amount of coupling 

between variables to two at a time. The full list of the resulting Aero- "Derivatives" are shown 

in Table 4- 1. 

TABLE 4- 1. AERO-MODEL ''DERIVATIVES" 

Step 2 - Plot derivative sensitivities to causal variables 

A software package supplied by NASA Langley was used to generate data for plots of 

the effects of a suspected causal variable to a derivative. This software package produced 

aerodynamic coefficients modeled through look-up tables of the F-16. Since the output of the 

aerodynamics package gave the non-dimensional rolling moment coefficient and not the desired 

derivatives, each plot was actually a multiple plot graphic representing variations of two 

independent variables, the derivative-related, independent variable,v, and the suspected causal 

variable. For example, for a coefficient of rolling moment due to P, Clp, (Le., the variation of 

the dependent variable with respect to the independent variable) that is suspected to vary with a 

(i.e., the causal variable), the independent variable, P, would be plotted along the x-axis, but 
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there would be multiple plots of the rolling moment coefficient, one for each selected value of 

a. The independent variable, that is, p, was varied over the maximum range of possible 

values, e.g., -5 degrees to 5 degrees, while the suspected causal variable, that is, a, was set at 

five typical values (based on the flight tables generated from the simulation by NASA, 

e.g., -10, 0, 10,20,30 degrees). The plots of all suspected predictors that were examined are 

given in Appendix A. 

Step 3 - Determine Predictom 

From the plots created in step 3, the following generalizations and decisions were made 

in forming the nonlinear model. First, if a predictor with a relationship containing a high 

ordered variable appeared to exist, e.g., coefficient of rolling moment due to beta is related to 

alpha by alpha cubed, then all lower ordered predictors of the same relationship were also 

included for the regression analysis. Second, from observations of the plots, certain ranges of 

the plots exhibited nonlinear behavior. One example of this was in the plots of beta versus 

collective flaps (see Plot 3 of Appendix A), where the coefficient resembled a sum of two 

different plots. To actually attempt to characterize this plot as a polynomial would have 

required too many high order terms. Although modeling with high order terms may produce a 

better fit, it may also over fit the model thereby masking the actual intrinsic behavior of the 

system. One alternative to a polynomial solution is to use a piecewise linear approach. A 

simpler solution, however, is to limit the flight envelope for beta to plus or minus 2.5 degrees, 

which also limits the number of predictor terms needed in the model. Within this region, the 

characteristics are straightforward enough to require using only the first and second-order 

terms without need of a more complicated piecewise linear scheme. Although this may seem 

too restrictive, this limit did not restrict the effectiveness of the nonlinear model, as will be 

shown later in subsection 4.2.3. Similar reasoning led to constraints placed on the rudder -_ 
- - -  

deflection and the asymmetrical canard deflection. The limits to these three parameters are 

summarized below: 
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1 .  -2.5 < beta < 2.5degrees 

2. -20.0 < rudder < 20.0 degrees 

3. -15.0 < asymmetricalcanard < 15.0degrees 

Examination of the plots reduced the predictor effects to the rolling moment coefficient 

into following groups: 

Large effect terms: 

Small effect terms: 

Insignificant terms: 

(.) = not examined 

r a  

Guidelines used to delineate the groups were based in part on the asymmetrical flap deflection. 

It was decided that a good threshold for determining a predictor's significance to the rolling 

moment would be the amount of rolling moment caused by one degree of asymmetical flap 

deflection (with a and P both at zero degrees). This level was -2.25 E-3; at the chosen design 

flight condition. Thus if any predictor, over the full range of the independent variable, did not 

display a difference in rolling moment of greater than I -2.25 E-3 I, then that predictor was 

deemed insignificant. Since differentiating between large and small only serves to set the order 

by which the predictor terns are tried in the regression analysis (in case the computer cannot 

handle all the predictors at once) and does not eliminate any predictor terms, the actual cutoff 

level chosen is not that important. An arbitrary level of 1.0 E-2 (approximately 5 times the one 

degree flap effectiveness) was set as the cutoff between large and small predictor terms. 

I 
I 
1 
3 

_. 
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In addition to these predictor terms, those terms from [SI that are consistent with the 

quasi-linear model were added, viz. 

Because the analysis method depends on visual interpretation of the plots, limits to the number 

of cross variables with high orders that can be detected are inherent in the method. Also, in the 

case of single, high ordered variable predictors, plots similar to those made for two different 

variables were not possible (e.g., a sensitivity plot of the coefficient of rolling moment due to p 
as a function of p2). However, it was possible to rule out the suggested predictors, p4 and p5 

(because none of the Cl versus p plots indicated any discernible high ordered characteristics). 

After adding the seven lateral axis, linear predictors (Le., first ordered, single, independent 

variables, y ~ )  from the linear model, thirty-one predictor terms were present to be tested in the 

regression analysis. These terms were: 

Step 4 - Perform backward elimination regression analysis 

Before any regression analysis could be implemented, the dependent variables, the non- 

dimensional aerodynamic coefficient of rolling moment, had to be generated. To generate these 

non-dimensional coefficients, an AFTVF-16 aerodynamic package supplied by NASA was 

used. The software package is based on look-up tables and is comprised of two parts. The 

first part is an initialization routine that reads in all the tables from a data file. The second part 

is a routine that reads in twenty input parameter values (these include independent variables, 

causal variables, and other constants nescessaxy to drive the program), computes the aircraft 

-_  
. - -  - 
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non-dimensional coefficients with the help of look-up tables, and outputs eight coefficients. 

The twenty inputs to the latter part of the simulation, REFKRO, are: 

DYNAMIC INPUTS 

Angle of Attack, Arctan (WN) 
Sideslip Angle, Arcsin (V/VTOT) 
Mach Number 
Total True Airspeed 
Pressure Altitude 
Height of aircraft C.G. above runway 
Euler Pitch Angle 

Rudder Deflection (+ T.E.L.) 
Left Horizontal Tail (+ T.E.D.) 
Right Horizontal Tail (+ T.E.D.) 
Speed Brakes, (O., 60.), (+ T.E.D.) 
Left Trailing Edge Flap (+ T.E.D.) 
Right Trailing Edge Flap (+ T.E.D.) 
Left Vertical Canard (+ T.E.L.) 
Right Vertical Canard (+ T.E.R.) 
Sym Leading Edge Flaps (+ L.E.D.) 
Deflection About Hinge Line 
Gear Deflection, 0. = Full Up, 1. = Full Down 

X Comp of Rotat Vel 
Y Comp of Rotat Vel 
2 Comp of Rotat Vel 

Rad/Sec 
Rad/Sec 
RadfSec 

The standard six degree-of-freedom nondimensional coefficients [ 101 plus two additional 

coefficients to account for the effects of the angle-of-attack rate on longitudinal forces and 

moments comprise the output: 

OUTPUTS - BODY FRAME 

X Comp of Steady Flow Aero Force 
Y Comp of Steady Flow Aero Force 
2 Comp of Steady Flow Aero Force 
X Comp of Steady Flow Aero Moment 
Y Comp of Steady Flow Aero Moment 
Z Comp of Steady Flow Aero Moment 
D( C Lift )/D( CBar*AlphadotD*Vtot ) 
D( C Pitch )/D( CBar*Alphadot/2*Vtot ) 
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For this study, which develops the rolling moment only to show the feasibility of an 

expanded envelope residual generator, the requirements for the input and output were less 

numerous. As mentioned earlier in the development of the approach, the quasi-linear model 

(also referred to as the "nonlinear model") approach may eventually depend on using multiple 

models scheduled to the Mach number; therfore, each model must be based on a fixed Mach 

number. As a result, all data generated by the simulation for this modeling effort were based 

on one Mach number. In addition, other parameters that were deemed inconsequential to the 

study or outside the scope of the study were held fixed. In effect, the aircraft was simulated at 

one "flight condition" with no limit to its inertial rates or command deflections. Seven 

parameters were futed at constant values: 

FIXED VALUES 
Constant Value 

Mach ## .6 

VT 660. 

Altitude 15000. 

Runway Altitude 1000. 

Flight Path Angle 0. 

8SB 0. 

 GEAR 0. 

The remaining thirteen parameters were driven by a random number generator resident 

on the VAX 11-750, varying within the physical limits of the aircraft (deflection limits) or 

within reasonable values encountered during evasive maneuvers (alpha, beta, angular rates). 

Some of the limits were later additionally confined by decisions made in selecting the potential 

terms (see subsection 4.1.2, step 3). The list below gives the original physical limits set on _ _  
- - -  - 

the aircraft parameters and their succeeding modifications. 
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SAMPLED VALUES 

where 

a 

6r 

5VCL 

6VCR 

~ L E F  

P 

9 

r 

nin 

-. 174533 

-.087267 
-.043633 

-30. 
-20. 

-25. 

-25. 

-21.5 

-2 1.5 

-27. 
-15. 

-27. 
-15. 

-2.43 

-3.49 

-. 175 

-.436 

Total Air Speed 
Speed Brake 
Landing Gear 
Rudder 
L. Horizontal Tail 
R. Horizontal Tail 
L. Flap 
R. Flap 
L. Canard 
R. Canard 
Leading Edge Flap 

54 

mix 

.523599 radians 

.087267 
-04363 

20. ' 

20. 

25. 

25. 

21.5 

21.5 

27. 
15. 

27. 
15. 

29.58 

3.49 

.175 

.436 

radians (original) 
radians (modified) 

degrees (original) 
degrees (modified) 

degrees 

degrees 

degrees 

degrees 

degrees (original) 
degrees (modified) 

degrees (original) 
degrees (modified) 

degrees 

radians/sec. 

radians/sec. 

radians/sec. 

I 

. -:- 1 
I 

TR-378 
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In all, lo00 samples of these thirteen parameters were generated to represent the sample space 

of all possible combinations. More details on the sampling issue will be discussed in 

1 .  . subsection 4.1.4. 

After the dependent variables had been generated, a regression analysis was used to 

choose the quasi-linear predictor terms of the polynomial. The regression process was a 

backward elimination regression [5] with the following criteria for removing terms h m  the 

polynomial: 

1. A significance threshold was computed to represent the minimum level of 

contribution to the non-dimensional rolling moment coefficient that a predictor term should 

have. In general, the greatest control surface influence to the rolling moment is the effects of 

the aileron, or in the case of the AFI? F-16, the flaperons. Thus, for this case, the significance 

threshold was set equal to one degree of asymmetrical flaperon deflection. Therefore, if a 

"typically large" value of a predictor (could be multiple variables, higher order variables, or 

both) multiplied by its coefficient contributes less to the non-dimensional rolling moment 

coefficient than 1 degree of asymmetrical flap deflection, then that predictor term was deemed 

insignificant and dropped from the polynomial. The "typically large" values chosen to 

represent the variables were: 

0.52 
0.044 

3.50 
0.44 
20.0 
25.0 
21.5 
15.0 

radians 
radians 
radianshec 
radians/sec 
degrees 
degrees 
degrees 
degrees 

_ _  
. - _  - The threshold level for significance, that is, the non-dimensional rolling moment coefficient for 

one degree of asymmetrical flap (as determined from the first regression run) was C1= -1.785 

E-3. 
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1 
I 
1 
1 
1 
1 

2. It was decided that the error standard deviation (variance)for the original, nonlinear 

set of predictors (31 terms) should not deteriorate by more than 10% (21%). Computation of 

the sample variance of the predicted error in the residual is given by (see Section 2) 

] (4-7) 
2 T  FOM 2 =- 1 [y'y + a:(X:Xs)as- 2 a ~ ( x , ~ y )  + oY+ as Csas n -  1 

where as and Xs are scaled versions of the vector a and the matrix X, as described in Eq. 2-13 

(scaling is discussed in subsection 4.1.4. 

The above two criteria were applied until either all remaining predictor terms complied 

with the first critierion or until the FOM (the prediction-error variance) of the latest regression 

run had exceeded the ten percent limit. 

Linear Model 

The linear case was developed to provide a standard for comparison to the nonlinear 

cases. The sample-variance of the model prediction-error for the linear case was 4.53495 E-5 

(standard deviation of about 6.7342 E-3). 

The resulting linear model was 

+ CIS, * 6r + Cl5mA - GHTA + ClsFA * GFA + QVc ~ V C  

= (-1.03E-1) P + (-7.36E-3) p + (9.08E-4) r 

+ (2.02E-4) 6, + (-1.41E-3) GHTA + (-1.44E-3)  FA + (3.77E-5) 6 v c  (4-8) 

Nonlinear Model 

The nonlinear regression required many iterations of the backward elimination proce- 

dure until one of the criteria was violated. The final form of the nonlinear equation contains 22 
-_ I 

- = -  1 
terms, six of which are linear terms. Table 4-2 shows the evolution of the regression .analysis. 

As each term was removed from the polynomial, the loss of accuracy of the FOM was small. 

. 
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TABLE4.2 

Trial Number 
Number of Terms FOM? Step Taken 

1 31 5.5482 E-6 remove p2 

2 30 5.5489 E-6 remove p3 

3 29 5.5507 E-6 remove p 6 ~ c  
4 28 5.5578 E-6 remove p3 a 2  

5 27 5.5577 E-6 remove p3 a 
6 26 5.5593 E-6 remove p 6sp 
7 25 5.5737 E-6 remove r 
8 24 5.7051 E-6 remove G ~ A  SF$ 
9 23 5.7052 E-6 remove 6vc 

10 22 5.8646 E-6 remove &A SFC~ 
11 21 5.8646 E-6 add h c  
12 22 5.7059 E-6 keeD model 

The removal of 6vc did produce a larger relative increase of the FOM than any of the other 

terms, including the last one. Thus Svc was retained even though its maximum effect was 

below the one degree of flap threshold. This choice returned favorable results because the 

FOM with Svc was actually lower than the FOM without from the previous iteration. 

The full 31-term model is: 

C1 = -9.59E-02p + -8.15E-03 p + -2.02E-03 r + 5.03E-04 S, 

+ -1.58E-03 ~ H T A  + -1 .77E-036~~ + 8 . 8 4 8 - 0 5 6 ~ ~  + -1.004 pa3 

+ 0.775pa2 + -0.216 pa + 7.78E-04 p6sp + -3.67E-04 P ~ F C  

+ 6.46E-03 6FAa2 + -5.59E-04 6FAa + 7.46E-08 6FA6FC2 + 2.67E-05 6FA6FC 

+ 6.15E-03 6HTAa2 + -1.43E-03 6 m A a  + -1.23E-08 6mA6FC2 + 2.51E-06 6mA6FC 

+ -1.68E-03 6ra + -6.61E-03 pa2 + 6.66E-03 p a  + 1.37E-03 S v c a 2  

+ -9.06E-04 6 v c a  + -1.94E-02 ra2 + 2.32E-02ra + -26.43 p3a2 

+ 8.678 p3a + 4.28 p3 + 1.86E-02 p2 (4-9) - -  
. -- - 
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The final 22-term polynomial equation for the nonlinear model is: 

C1 = (-8.97E-2) p + (-8.17E-3) p + (5.05E-4) S, + (-1.58E-3) 6,~ 1 
I 
I 

(4-10) 1 

+ (-1.77E-3) SFA + (9.03E-5) 6vc + (-9.35E-1) pa3 + (7.05E-1) pa2 

+ (-2.03E-1) pa + (6.45E-3) +Act2 + (-5.54E-4) + (2.67E-5) %A~FC 

+ (6.11E-3) ~ J J J - A ~ ~  + (-1.42E-3) 6 w ~ a  + (2.45E-6) 6 ~ ~ 6 ~ c  + (-1.68E-3) Qt 

+ (-6.51E-3) pa2 + (6.64E-3) pa + (1.432-3) 6vca2 + (-9.39E-4) 6vcu 

+ (-2.42E-2) ra2 + (1.98E-3) ra 

1 
I 
1 
I 
I 

deviation to significance threshold I 
I 
I 
I 
i 

1 

The final FOM for the 22-term nonlinear model was 2.39 E-3, which is a 64 percent reduction 

in the standard deviation of the residual model error as compared to the linear model FOM of 

6.73 E-3. This model produces a significant inprovement in the predicted error of the residual 

over the linear model. This model also reflects a relatively small loss in accuracy compared to 

the full 31-term case, which had a FOM of 2.35 E-3. Recall that the FOM is a measure of 

model error, and the goal is to minimize the FOM. 

The 22-term model's standard deviation of 2.39 E-3 is roughly one and one-third times 

the one degree of differential flap level of -1.78 E-3 (based on the final model), a good 

improvement over the factor of four from the linear models' corresponding ratio of standard 

4.1.3 Incorporating Sensor Noise In The Rolling Moment Model 

As detailed in subsection 2.2.3, the quasi-linear regression incorporates the impact of 

sensor noises. The original intent in the development of the sensor noise-incorporated rolling 

moment model was to reduce the regression analysis to one step, that is, given the original set 

of 31 predictors, the optimal solution can be readily determined from the regression coefficients 

output from the 3 1 predictor run. Unfortunately, the implementation for the generation of Z (in 

Eq. 2-12) is not a trivial one. Due to time constraints and computational requirements, the 
-_ 

computation of Z was not used to finalize the models (that is, the Z matrix was set to zero). Its - - - -  i 
impact is now discussed. The Z matrix is defined as: 
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(4- 1 1) 

where 
m wi = xi -xi 

For each individual component of E, the expanded term will be a polynomial. This polynomial 

consists of terms, all of which have at least one variable as part of the term with the exception 

of the noise only term. If we assume that all variables have zero mean, then when the expected 

value is taken, all individual terms of each polynomial will have at least one variable to reduce 

that term to zero, with the exception of the one term with all noise variables. Thus, the sigma 

array would consist of components that contain one term each. These terms are in the f& of 

Many of these terms are actually a combination of two or more measurements and thus 

also, two or more noise values, e.g., 

6FC + qFC = 112 * (6=+ qm + 6 m+ r\m) (4-12) 

where, 

FC = collective flaperon 

FL = left flaperon 

FR = right flaperon 

For these terms, which can all be written in the form (a+b)k, the expansion of the polynomial 

will result in no terms that are all even-ordered if k is odd. (For this specific set of terms, all 

cross terms will result in n being an odd number.) Since all odd moments of a Gaussian 

distribution have zero mean, those terms that are not all even-ordered can be ignored [7], viz., 

given that a variable X has a normal probability density, 

E[(x-m)k] = ( -. 

. - -  - 1 x 3 x 5 ... (k-1) ok for keven 

for k odd 0 
(4- 13) 

where 
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m = mean = E[XI 

0 2  = var[X] 

Therefore, although there are combination terms like the deflections, they can be treated as any 

other measured variables. As an example of the I: derivation, let , 

xy= P + q  (4-14) 

In addition to the assumptions made above for sigma, simplifications had to be made to 

the cross terms of the Z matrix. These simplifications were made because of the complexity of 

implementing symbolic manipulation, which was requkd to solve the polyomials of the cross 

terms. Instead, it was decided to just model the cross term effects as insignificant compared to 

I 
I 
I 
I 
1 
1 
1 
1 
1 
I 
I 
I 
I 
I 
I 

(4-15) 

- = -  I 
The diagonal terms of the C matix are given in Table 4-3. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

TABLE 4-3. DIAGONAL TERMS OF THE MATRIX 
(ASSUMES ALL MEANS 

OF VARIABLES = 0) 
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I 
The sensor values that were used for this study were sensor values from an old 

Boeing 737 model. These are listed below: 1 
0.007 
0.007 

0.00035 
0.00035 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

radians 
radians 
radians 

radians 
degrees 
degrees 
degrees 
degrees 
degrees 
degrees 
degrees 

1 
1 
1 

Linear and nonlinear models were also generated with the sensor noises incorporated 

into the computations. The linear model with sensor noises incorporated resulted in an FOM 

of 6.7 E-3. The equation for this model is: 

CLB = (-1.03153E-1) p + (-7.37007E-3) p + (9.09075E-4) r + (2.02038E-4) S, 

+ (-1.41048E-3) 6 m ~  + (-1.44512E-3) + (3.76989E-5) 6vc (4-16) 

The nonlinear model (22 predictor terms) with the addition of sensor noises showed 

comparable relative changes to those of the linear model. The FOM was 2.39 E -3 and the 

polynomial equation for Cl was: 

CLB = -8.97E-02p + -8.17E-03 p + 5.05E-04 6r + -1.58E-03 G ~ A  

+ -1.77E-03  FA + 9.03E-05 6 v c  + 0.934pa3 + 0.704 pa2 

I 
I 

(4-17)' - =  - I 

+ -0.203 pa + 6.45E-03 &Act2 + -5.54E-04 6FAa + 2.67E-05 ~ F A ~ F C  

+ 6.11E-03 6mAa2 + -1.42E-03 6mAa + 2.45E-06 ~ H T A ~ F C  + 1.68E-03 &a 

+ -6.51E-03 pa2 + 6.64E-03pa + 1.45E-03 6vca2  + -9.39E-04 6vca -_ 

+ 2.42E-02 ra2 + 1.92E-02 r a  
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The full nonlinear model with 3 l-terms and sensor noise calculations is 

CLB = -9.58E-02p + -8.15E-03p + -2.02E-03 r + 5.03E-04 S, 

+ -1.58E-03 GHTA + -1.77E-03 SFA + 8.84E-05 6vc + -1.003pa3 

+ 0.774 pa2 + -0.216pa + 7.78E-04 pSsp + -3.67E-04 ~ S F C  

+ 6.46E-03 6FAa2 + -5.59E-04 6FAa + 7.46E-08 6FA6TC2 + 2.67E-05 6FA6TC 

+ 6.15E-03 6 m A a 2  + -1.43E-03 S m A a  

+ -1.68E-03 &a + -6.61E-03 pa2 + 6.66E-03 p a  + 1.37E-03 S v c a 2  

+ -9.06E-04 SVCa + -1.94E-02 ra2 + 2.32E-02ra + -26.26p3a2 

+ 8.771 p3a + 4.21 p3 + 1.86E-02 p2 

+ -1.22E-08 SHTASFC~ + 2.51E-06 S ~ A S F C  

(4- 18) 

4.1.4 Computational h e s  

To run the regression analysis on the suspected terms, non-dimensional, aerodynamic 

coefficients first must be generated. This output should be representative of the full range of 

the aircraft control inputs and inertial outputs throughout the flight envelope. With thirteen 

input parameters that are varied, a factorial design (all combinations of all levels of each 

parameter) is not feasible. Therefore, the sample inputs that are generated must be well dis- 

tributed over the sample space. This section addresses the issue of generating truly random 

samples for the aerodynamic package and the associated problems of producing well condi- 

tioned random arrays. 

For each run of the regression analysis, one thousand samples or sets of input were 

generated by an accompanying program to the aerodynamic program. The number of samples 

chosen per run was originally limited to 10,OOO samples by the hardware limitations of the 

VAX internal storage size. Ideally, a minimum of a factorial sample is desired, that is, a sam- 

ple large enough to cover every possible combination of variables, given a predetermined, dis- 

crete interval for each variable. However, this was not possible and later, due to run-time 

constraints, the number of samples was reduced to loo0 (which produced very good response 

time). To insure that the sample space over the thirteen variables was representative, 
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I 
1 
I 
1 

uniformity checks were made for both the random number seed and for the actual samples that 

were generated. 

The impetus for testing the random number seed and the random number generator on 

the VAX 11-750 was based on suspicions that although each parameter could show uniformity 

along its range, that it was st i l l  possible that correlation could still exist between the parameters 

or channels. For example, though random numbers for alpha and beta could be evenly dis- 

tributed individually along their full range, nothing precluded all low values of alpha being 

generated when all low values of beta were being generated, and vice versa for the high values. 

Thus, uniformity along n-factorial space was also desired. One method for checking - 
non-correlation of values is detailed in [ 1 13. This method uses counters for each "factorial 

space" and computes a chi-square value: 

. .  

where 
K = # of subintervals in [0,1] 
d = # of dimensions (variables) 
n = #of samples 

fjlj2...jd = Ui's having first component in subinterval j 1 and second 
component in subinterval j2, etc. 

(4-19) 

I 
I 

- - = -  1 

Using the above test for n=3 channels, various random number seeds (some were ones 

suggested by [ 111, others were arbitrarily picked) were evaluated. The random number seed 

that gave the most favorable result was 8374997 which had chi-square = 4021, where 4095 -_  

was the upper limit for a well-behaved random number generator seed. In general, the smaller 

chi-square is, the better the seed value is. The test was repeated for the same seed at n=5 

1 
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channels and only 10 gradations per channel as opposed to 16 gradations for the previous test. 

The resulting chi-square value, 100,234 , was slightly higher than the suggested upper limit, 

99,999. One explanation for the higher values could be the reduction in the fineness of the 

gradations. 

One interesting note discovered during the random number seed tests was that the 

random numbers are highly correlated if used sequentially along a variable. That is, if the 

sequentially generated numbers are distributed down the first variable before being distributed 

down the second variable, etc., as opposed to distributing the numbers across all variables, one 

number per variable. For the case where the numbers are all generated down one variable 

before another, the chi-square value for a three variable case was 330,722.5, where 4095 was 

the acceptable upper limit. In addition to testing the random number generator resident on the 

VAX, a Tausworthe generator was implemented as an alternative (see [ 1 11). Although it 

showed promise with respect to lack of correlation, the speed of the generator (more than five 

times slower) made it prohibitively impractical to use or even evaluate extensively. 

After the random number seed was selected, a second test for uniformity was done on 

the actual input array of random numben generated. (Due to the hardware constraints of the 

VAX, the chi-square test could not test the chosen seed for the thirteen variable case.) The 

input array was a loo0 x 13 array of random numbers between 0.0 and 1.0 called X,,d. The 

pseudo-inverse Of X s e d  was taken (more specifically, xs,dtxseed was checked for 

singularity) to see if it was well conditioned. To determine whether the array was well- 

conditioned, singular value decomposition was utilized to examine the condition number. This 

number is a ratio of the largest value to the smallest singular value. The resulting condition 

number from this verification was 42.66, well within working precision limits. 

Although the sampled array (13 input variables with values [0,1] X lo00 points) 
-. 

. -_  - generated by the random number generator was well conditioned, the resulting scaled XtX 

array was not. The scaled XtX array contains the random values adjusted to the minimum and 

maximum ranges of each individual variable. Due to the large storage demands of processing 

65 TR-378 



such large mays, the code had to be implemented in single precision. This limited working 

precision caused the Xtx to appear singular during the inversion process. Using Xtx in the 

solution method when the array is singular further compunds the problem of an ill-scaled X 

array. While methods do exist for avoiding the pseudo-inverse (such as the LDU method, QR 

method, [12]), it was sti l l  preferable to use XtX, if possible, because of the heavy memory 

requirements associated with storing X (X need not be stored to compute X&). In addition, 

the form X% is required in the sensor computations described above (see subsection 4.1.3). 

Therefore, the goal was to get X as well conditioned as possible through scaling of the 

columns. This was achieved through the following procedure. 

Let x = [mxn] array , a = coefficient vector [nxl]. Instead of X, use Xs = Xd 

and a, = d-la where d = diagonal scaling matrix. Then 

y = Xa = (Xd) (d-la) = Xsas 

(Xs%)as = XSTY 
as = [XsTxs]-l XsTy 
a = d[Xsws]-l XsTy 

For the case using C, 

a = d(XsTXs + Cs)-l XsTy 
where 

Cs = dTCd . 

(4-20) 

(4-21) 1 

For determining which variables to scale and by how much, the heuristic used was to scale by 

factors of ten so that all the X X  diagonal elements were within an order of magnitude from 

each other. The scaling factors that were chosen are given below: 

- - = -  1 
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15 
16 
17 
18 
19 
20 
21 
22 
23 

0.001 
0.01 
0.1 
0.1 
0.000 1 
0.0 1 
0.1 
1 
1 

24 
25 
26 
27 
28 
29 
30 
31 

6vca2 
6vca 
ra2 

r a  
P3a2 

P3a 
P3 
P2 

1 
0.1 

10 
10 

105 
105 

103 
104 

4.2 RESIDUAL GENERATION-- Il"LEMEN"'ATl0N 

After the coefficients for the quasi-linear models have been produced, the process of 

generating the residuals can be completed. The purpose of this section is to describe the imple- 

mentation of the residual generator. A residual generation program was implemented on the 

VAX 11-750 similar to the program that was created for the single flight condition residual 

generation from an earlier task [2]. The model for the aircaraft dynamics and kinematics used 

to create the residuals plus some preliminary calculations incorporated to prepare the flight data 

are given in subsection 4.2.1. The test plan for the simulations is outlined in subsection 4.2.2, 

and the test results and conclusions are presented in subsections 4.2.3 and subsections 4.2.4, 

respectively . 

4.2.1 Residual Generation Equations 

The general force and moment balance equations are given by 

From the rolling moment, the CLB is obtained from one of the C1 models in subsection 4.1. 

The predicted angular acceleration along the X-axis can be computed as: 
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(4-22) 

Using the tapezoidal rule, with p computed from the present and previous roll rates, the 

residual is derived as: 
(k + 1) + 6 (k) 

2 Vp(k + 1) = Ij (k + 1) - (4-23) 

The flight data that provides the measured deflections and also the aerodynamic values 

such as a, p, p, q, r, etc. are retrieved from sequential data generated from a simulation 

package that used REFAERO as the aerodynamic model. These simulation runs were 

generated by NASA based on the maneuvers listed in the test plan (subsection 4.2.2). To 

insure that the data had the proper units and format, the data was configured from its origkal 

form (binary, 97 channels) to a temporary form more readily accessible to the residual 

generator (asci, 18 channels). Since the flight data was generated from the NASA simulation 

package, it represented the true aircraft states. To simulate the errors inherent in measurement, 

noise was added to the true data before it was passed to the residual generator. 

4.2.2 Testplan 

The test plan calls for simulation runs using three different aimaft maneuvers. These 

three maneuvers were selected from typical maneuvers encountered during normal flight. It is 

expected that the three maneuvers will task the range of aircraft motions and required controls. 

The three maneuvers are shown in Table 4-4. These three maneuvers were tested over several 

flight conditions. These flight conditions were chosen by NASA as a representative range of 

conditions, with the intention of displaying the deficiencies of the linear model and the 

robustness of the nonlinear model. The flight conditions are: 

Altitude (feet) SDeed Angle of Attack . .  Trim Condmon 
F1 10,000 600 ft/sec 2.84 
F2 2,500 Mach .2 18.82 
F3 30,OO Mach 1.4 2.12 
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TABLE 4-4. TEST PLAN 
_ _ _ ~  

Plane initially should be straight and level, p, q, EO, constant velocity 

Time fse& JZamr, Value f d e m e e d a  

M1- Heading Change 

Navigational Maneuver 1 .O 
1.5 
6.0 
6.5 
8.0 

M 2 -  PeekandDive 

Evasive Maneuver 1 .o 
3.0 
6.0 
8.0 
8.5 
10.0 
11.0 
12.5 
14.0 

Navigational Maneuver 1 .O 
1.25 
6.25 
6.50 
8.0 

p =  180 q =  0 
p =  0 q =  10 
p =  -180 q =  0 
p =  0 q =  0 
stop 

p =  0 
p =  0 
p =  0 
p =  360 
p =  0 
p =  180 
p =  0 
p =  0 
stop 

q =  20 
q =  0 
q =  20 
q =  0 
q =  20 
q =  0 

q =  0 
1 = 20 

p =  90 q =  10 
p =  0 q =  0 
p =  -90 q =  -10 
p =  0 q =  0 
stop 

In addition to making comparisons between the linear and nonlinear cases of the model 

with sensor noises ,bcluded, runs will be made with the nonlinear model that doesn't 

incorporate predicted sensor noises to show the improvements when sensor noises are 

modeled. Table 4-5 summarizes the simulation runs that are planned. 
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TABLE 4-5. PLANNED SIMULATION RUNS 

Trim 
Condition 

F1 

Maneuver Maneuver Maneuver 
M1 M 2  h.13 

With Noise With Noise With Noise 

Without Noise Without Noise Without Noise 

F2 

With Noise 

Without Noise 

With Noise 

Without Noise 

With Noise 

Without Noise 

~ 

F3 
With Noise 

Without Noise 

4.2.3 Results 

As mentioned above, test runs were made using simulated flight data provided by 

NASA based on a full six degree-of-freedom nonlinear aerodynamic software package of the 

AFTVF-16. This data was a best attempt at the prescribed maneuvers listed in the test plan, 

since no flight control system was available to implement exactly the desired aircraft 

maneuvers. For many of the following rest comparisons, noise was added to the simulated 

flight data. 

The results of the residual generation tests can be categorized into several areas and they 

will be examined in the following order: first, the benefits of the nonlinear model over a linear 

model are analyzed, then tradeoffs due to the reduction of terms will be discussed, next, 

comparisons of the effects of sensor noise modeling are made; and finally, performance of the 

models over several flight conditions are examined. 

In general, it can be gathered that the reduced nonlinear model offers improved accu- 

racy over the standard linear model and that the nonlinear model may use a reduced set of terms 

with no significant loss in accuracy. The incorporation of sensor noise computation produces 

I 
I 
1 
I 
1 
I 
1 
1 
1 
I 
1 
I 
I 
I 
I 
I _ _  

- = -  I 
I 
I 

70 TR-378 



no discernible improvement in performance as long as the sensor noises are relatively small. 

And the nonlinear model performs well as long as operating conditions were fairly close to the 

modeled conditions. 

Linear vs. Nonlinear models 

To examine the benefits of using a nonlinear model as opposed to using a linear model, 

test runs were made with the linear model without sensor noise computations and the 22-term 

nonlinear model without sensor noise computations. Because the purpose of these compar- 

isons were to look at the effects of using nonlinear predictor terms the two sets of runs were 

made without injecting Gaussian noise into the simulated flight data. The linear model and 

nonlinear models are the ones described in subsection 4.1.2 and are also labeled as Eqs. 4-8 

and 4-10, respectively. 

The flight condition selected for these runs, labeled as F1 from the previous section, 

most closely resembled the flight condition used to design the models. Although they are not 

identical (airspeed = 600 ft/sec., altitude = 10,OOO ft vs. airspeed = 660 ft/sec., altitude = 

15,000 ft) the flight conditions are similar enough to produce representative residuals. Figure 

4-1 shows plots of the linear model residual versus the nonlinear model residual at flight 

condition F1 for each of the three maneuvers, M1, M 2 ,  and M3. 

Recall that the FOM of the linear model was 6.73 E-3 and the FOM of the nonlinear 

model 2.39 E-3. From these values, dimensionalized FOMs for these two models can be 

computed. The expected standard deviation in the residual can be roughly approximated as 

(4-24) 
- 
q S b (FOM) / I, = expected standard deviation of the residual, pdot 

where, 
- 
9 = dynamic pressure (lbslft2) 
S = surface area of wing (ft*) 
b = wingspan (ft) 
IXX = moment of inertia of the x axis (slugs-ft2) 
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. 
Thus, for the modeled F-16 (using S = 300, S = 300, b = 30, I, = 9875), the dimen- 

sionalized FOMs are 1.8 radians/sec2 for the linear model and .64 radians/sec2 for the non- 

linear model. These values match up well to the M1 maneuver, which is a heading change, and 

the M3 maneuver, which is the climbing turn. The nonlinear model residuals for these two 

maneuvers are roughly .4 of the linear model. This is slightly worse than the expected 

improvement of .36 but it is a reasonable result, given that the flight conditions do not match 

up exactly. For mild maneuvers, the nonlinear model offers a much better prediction of the 

angular acceleration, pdot. 

The expected FOMs do not reflect the larger residuals in Figure 4-lb. However, 

remember that maneuver M 2 ,  the peek and dive, is a more severe maneuver designed to 

represent evasion level aircraft behavior. A closer inspection of the angle of sideslip for this 

maneuver (Figure 4-2) will reveal that the aircraft is clearly operating outside the p range that 

was used to design the models. p was limited to a narrow operating bandwidth of 2.5 degrees 

during the design process (subsection 4.1.2, step 3) specifically because it displayed very 

discontinuous properties outside that range, and thus was simplified to a low-ordered 

polynomial model. As a result, the severe nonlinear characteristics of p contributes to a larger 

than expected residual for both models in M2. Had time permitted, a piecewise linear approach 

would have relaxed the requirement for such a n m w  limit. 
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Backward Elimination Procedure Performance 

The backward elimination process was utilized to reduce the number of terms in the 

original 31-term nonlinear model (Eq. 4-9 from subsection 4.1.2) to a 22-term model 

(Eq. 4-10 from subsection 4.1.2). It was h*othesized that a reasonable number of terms 

could be removed without significantly reducing the accuracy of the model. From the Figure 

Of Merit computations in subsection 4.1.2, the loss in accuracy in switching from the nonlinear 

31-term model to the nonlinear 22-term model was slightly greater than one percent of the 

standard deviation (2.39 E-3 to 2.35 E-3). 

Two plots comparing the residuals generated from the nonlinear 31-terms and nonlinear 

22-terms models are given in Figure 4-3. For these plots, the flight condition chosen was the 

same as in the plots above and the input "flight data" was not injected with noise. Since, it was 

shown that the M2, the peek and dive, is not a representative maneuver given the limit to the 

sideslip angle range, that maneuver is omitted in the plots. Figure 4-3a compares the two 

models during the heading change maneuver (Ml) and Figure 4-3b compares the two models 

during the climbing turn maneuver. As expected, Figure 4-3a shows the minimal loss in accu- 

racy from a 3 1-term nonlinear model to a 22-tern nonlinear model. A peculiar result is shown 

in Figure 4-3b for the M3 maneuver, where it appears that the reduced set of terms actually 

improves on the accuracy of the residuals. A plausible explanation for this phenomenon is that 

the 3 1-term model may be overfitted to the sampled data. The region in which this oddity 

occurs, between 1.25 seconds and 6.25 seconds, is the period when the aircraft is in a steady 

climb with no control deflection change or attitude change. Therefore, it is possible that a 

lower number of terms may better describe a simple motion. 
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Residual Mean-Sauare Minimization Performance 

The original intent of incorporating sensor noise computations was to derive the optimal 

nonlinear model using a sensor noise to modeling noise tradeoff. In addition, models that 

include sensor noise computations should perform better in the residual generation process than 

models that don't consider sensor noises, since in real applications, all measurements, by 

definition, must have some intrinsic noise characteristics. 

To test this hypothesis, residuals were generated using a full 31-term nonlinear model 

without noise computations (Eq. 4-9 from subsection 4.1.2) and a full 31-term nonlinear 

model with noise computations (Eq. 4-18 from subsection 4.1.3). The 31-term models were 

selected instead of the 22-term models because the 31-term models include ten terms, that were 

deemed less significant contributors to modeling given their respective inherent noise values, 

that the 22-term models do not have. Theoretically, the model with sensor noise computations 

will downweight these terms more significantly than the model without sensor computations. 

However, the actual regression coefficients of the two models (with and without sensor 

computations) are so similar, i.e., less than one percent difference, it is expected that no 

noticeable difference in the performance of the two models will appear. 

For this comparison, maneuver M3, the climbing turn maneuver, was chosen for the 

same flight condition as for the other runs, namely, F1. The resultant residual for the nonlinear 

model with sensor noise computation and the model without sensor noise computation are 

plotted in Figure 4-4a and Figure 4-4b, respectively. As expected, the two plots are almost 

identical. A closer inspection of the noise computation reveals why this should happen. Recall 

that the purpose for using this method is to remove terms with large sensor noise relative to its 

modeling contribution. But if all sensor noises are modeled at the same level (e.g. , all 

deflections have .1 degree standard deviation) , then they will all have equal weight relative to 
-_  

each other, effectively reducing the problem to one that uses no sensor noise computations. . - =  - 

For the case that is modeled here, all values for the individual predictor terms are less than 

one and are small compared to the range of the predictor terms. 

77 TR-378 



1.0 

0.5 

vP 
(mcusec2) 0 * 0  

-0 .5  

-1.0 I 1 1 1 
5 . 0  10.0 15.0 20.0 

R-6550 time(sec) 

Figure 4-4a. Nonlinear 3 1 With Sensor Model Noise M3 F1. 

vP 0 .0  

-0 .5  O . ~  

(ra&sX*) 

-1 .0 l  I 1 1 
5.0  10.0 15.0 20.0 

time(sec) 
R-6551 . 

Figure 4-4b. Nonlinear 31 Without Sensor Model Noise M3 F1. - - ' = - I  

78 TR-378 



To show that the Zs should not have any effect on the residuals, the following test case 

was executed. A simple two-term polynomial, 

y = 4x + 5w 

was put through the same regression program used for the F-16 models. Ten samples were 

generated for (x,w) where (x,w) varied from -10. to 10. The first test case used identical 

values for x and w, namely, 

0, = ow = -01 

The resulting coefficients from the regression produced ax = 3.99 and a, = 4.99, almost 

identical to the true values. However, when the 2s are very different, such as, 

0, = 60. (3, = .01, 

then the value of this method is truly realized For this case, the x variable has a very high 

sensor noise compared to its normal range, thus, it is downweighted in the regression . The 

resulting coefficients for this case are ax = 0.301 and a, = 4.318, reflecting the lack of 

reliability in the x measurement. The sensors in the F-16 models more resemble the fmt  test 

case than the second. 

Off-Nominal Flight Condition Performance 

Originally, the development of the extended envelope residual generation process called 

for modeling the F- 16 with a nonlinear polynomial at multiple flight conditions. The residual 

generator would then be scheduled across the various flight conditions to provide a more 

responsive model. However, time constraints did not permit implementation of the full scope 

of the plan. Using multiple flight conditions necessitates a tighter fit of the flight characteristics 

for each condition than a method that requires one model to fit all conditions (which must be a 

more relaxed fit to encompass more possible flight conditions). Therefore, it is not expected 

that these models, designed for one specific flight condition, would perform well in other flight -_ 
- - -  - conditions. 
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To test the robustness of the models, the nonlinear 22-term model (Eq. 4-10 from 

subsection 4.1.2) was used at all three flight conditions with the climbing turn maneuver (M3). 

The results of these runs are plotted together in Figure 4-5. The model performed well not 

only for F1, but also F2, the low-speed case. However, the model breaks down when tasked 
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to produce residuals for the supersonic case. This is understandable considering that the 

predictor terms were chosen to characterize the subsonic region of flight, not the highly 

nonlinear region of supersonic flight. 

I 
I 
I 

4.2.4 Summary 

In this section, a method for developing an extended envelope residual generator has 

I 
I 

been given. Using backward elimination regression analysis, a non-linear, polynomial model 

of an AFTVF-16 is created. Significant effort was placed on deducing the optimal set of 

predictor terms. In this regard, alternative methods for solving the predictor term problem 

were also developed, namely, a residual mean-square minimization method that incorporates 

the use of sensor noise computations. The extended envelope residual generator requires 

_ _  
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multiple models for multiple flight conditions. However, time did not pennit the development 

of any additional model. The residual generation results are therefore based on a models 

developed at a single flight condition. 

The nonlinear models performed better than the linear models, as expected. 

Performance ,however, was constrained by the lack of a perfect match between the flight 

condition used to design the model and the flight conditions selected for the "flight data". It 

was also predicted that reducing the original set of nonlinear terms from 31-terms to 22-terms 

would not significantly detract from the accuracy of the residuals that were generated although 

significantly simplifying computations. Models developed using sensor noise computations 

were expected to perform much better than models that did not consider sensor noise 

computations. However, due to the relatively small sensor noise levels, performance gains 

were minimal. Finally, the models that were developed were not expected to perform 

exceptionally well over a wide range of flight conditions since the whole extended envelope 

approach requires that multiple models, each one tightly fitted to its flight condition, be 

developed. 

Many areas in this method show possibilities for even further accuracy in the residual 

generation process. First of all, multiple flight conditions must be modeled to insure a truly 

robust residual generator. Use of the sensor noise computation method should be exploited if 

sensor noises prove to be high for the aircraft. If sensor noises are relatively low, the 

backward elimination method is very reliable. The reduction of the number of terms could be 

carried out even further, given the promising results of almost no lost accuracy for the terms 

that were removed. Other areas of investigation include the use of a piecewise-linear model to 

circumvent the discontinuous characteristics of certain predictors, such as p. 
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SECTIONS 

SUMMARY 

This report presented the results of an effort to develop envelopeexpansion methods 

for the control element FDI algorithm developed in [2]. As in past efforts, this effort was 

divided into two related tasks, residual generation and decisionmaking design. Separate 

consideration of these aspects of the FDI problem allows accountability for many of the non- 

idealized effects that make the FDI problem most difficult. This effort assumed that the 

structure of the FDI algorithm would be predetermined and that adaptation of its parameters as 

a function of the appropriate flight condition values is required 

For residual generation, the adaptation mechanism we considered is a model Scheduling 

mechanism as opposed to a model "learning" mechanism to avoid the problem of false 

adaptation to the failures we wish to detect. Effects that need to be considered include both 

large-amplitude maneuvers and changes due to Mach and altitude. The effect of large 

maneuvers at a single flight condition involves nonlinearities and interactions that are normally 

not considered in a linear aerodynamic model (e.g., for control design). Significant changes 

may also occur as a function of Mach and altitude because of the flexibility of the aircraft and 

the effect on load distributions due to flight condition. Qualitative prediction of the large 

maneuver effects is possible through physical arguments involving standard aerodynamic 

concepts. The so-called "static flexibility" effects are less understood and, therefore, require 

explicit scheduling using look-up tables. 

For large maneuver effects, the scheduling is accomplished "implicitly" by construction 

of an analytic nonlinear model. This model is derived as a simplification to a mature aero _ _  
package, although advanced identification techniques could be directly applied to flight test data 

as well. The development of a useful nonlinear model for the residual generation process 

- - = - 
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should incorporate physical understanding of aerodynamics (to avoid complex and/or overfitted 

models) and must consider the effects of sensor noise in determining the utility of individual 

elements of the model. Physical understanding led to a "panel method" model format. This 

format, however, had several drawbacks and led to the consideration of a quasi-linear model. 

This model assumes the form of a linear aerodynamic model, but with "derivatives" that are 

modeled as a function of other variables. The selection of which variables influence which 

"derivatives" is then justified from a physical standpoint. When the quasi-linear model is 

further expanded into a "parameter-linear" format, regression analysis can be used to estimate 

the best set of parameters. We then derived a small  modification to standard regression - 

methods that explicitly deal with sensor errors in determining optimal residual generation 

parameters. 

For decisionmaking (DM), we also assumed that the temporal characteristics (i.e., 

spectral shape) of the residuals are constant so that filtering requirements for each hypothesis 

test do not need to be scheduled. Scheduling of DM parameters is potentially required 

1 
I 
I 
I 
I 
1 

whenever changes to the covariance of the filted residuals occur and whenever changes to the 

failure directions occur. The former requires changes to both thresholds and projection vectors 

while the latter only requires changes to projection vectors. Although failure directions f ~ l z l y  

change whenever the control derivatives change, if these changes effect all derivatives in a 

similar manner, then the failure directions remain constant. When all derivatives are not 

affected in a similar manner, scheduling of the projection vectors must occur. However, this is 

only possible if the parameters affecting the failure directions are measurable. Such is not the 

case when a failure direction is affected by its corresponding control element value. Should 

this occur (as it does for the flaperons on the F-16) care must be taken in the design of tests for 

flaperon failures (particularly in using the pitching-moment residual). 
_ _  

The measurable quantities upon which scheduling must be based include dynamic 

pressure, roll rate, and angle of attack, since their values have a direct impact on the sensor 
- - = -  I 

I 
noise component of the residuals. However, other effects, such as those that are modulated by 
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maneuver size are more difficult to describe. One way to establish scheduling requirements for 

these effects is to perform an empirical study (using either a high-fidelity simulation or flight- 

tests) and to schedule parameters as a function of the "size" of aimaft "inputs." 

Once the flight-condition parameters are defmed, the DM design goal becomes one of 

balancing complexity and performance of the scheduling mechanism. The simplest DM design 

is a fixed-parameter solution and should be used if its performance is adequate. At the other 

extreme is a DM design in which all parameters must be scheduled. In between these extremes 

a partial fixdvariable design allows for some parameters to be fixed and some to vary as a 

function of flight condition. Design and evaluation methods were given for all three DM- 

design concepts. 

In application of residual-generation methods to the AFT'I-F-16, the nonlinear models 

performed better than the linear models, as expected. Performance ,however, was constrained 

by the lack of a perfect match between the flight condition used to design the model and the 

flight conditions selected for the "flight data". It was also predicted that reducing the original 

set of nonlinear terms from 32-terms to 22-terms would not significantly detract from the 

accuracy of the residuals that were generated although significantly simplifying computations. 

Models developed using sensor noise computations were expected to perform much better than 

models that did not consider sensor noise computations. However, due to the relatively small 

sensor noise levels, performance gains were minimal. Finally, the models that were 

developed were not expected to perform exceptionally well over a wide range of flight 

conditions since the whole extended envelope approach requires that multiple models, each one 

tightly fitted to its flight condition, be developed. 

Many areas in this method show possibilities for even further accuracy in the residual 

generation process. First of all, multiple flight conditions must be modeled to insure a truly 
-. 

robust residual generator. Use of the sensor noise computation method should be exploited if - - -  - 

sensor noises prove to be high for the aircraft. If sensor noises are relatively low, the 

backward elimination method is very reliable. The reduction of the number of terms could be 
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carried out even further, given the promising results of almost no lost accuracy for the terms 

that were removed, Other areas of investigation include the use of a piecewise-linear model to 

circumvent the discontinuous characteristics of certain predictors, such as p. 

- - :- I 

86 TR-378 



APPENDIXA 

REF'RESE"ATIVEAERODYNAMICINTERACII0NS 

8 .e20 

e .e10 

e .e00 

-8.010 

-8.828 

I I I I I 
L EG END I 

1 I 1 I 1 I I 
+ . e  3 . 8  0.8 2 .8 4 .e 

beta (deg) 
R4553 

Figure A-1. Sensitivity of C1 to p for Various Values of a. 

87 TR-378 



v) 
S 

0 .e20 

0 .e10 

8 .e00 

-8 .ole 

-0 .e20 

I- 

-9 .e -2 .e e .e 2 .8 4 .e 

I36554 beta (deg) 

Figure A-2. Sensitivity of C1 to p for Various Values of 6sp. 

0.010 

0 .e05 

e . e m  

-8.005 

-8.010 

.. 
\ 

I 1 I I I 
4 .e *.e 0 . 0  2 .0 4 .0 

beta (deg) R6555 

Figure A-3. Sensitivity of C1 to p for Various Values of ~FC. 

88 TR-378 



I I- 
-8 -010 I I I I I I 

-20 .e -10.8 0 .e 10. 20 .0 

R4556 S,,(deg) 

Figure A-4. Sensitivity of C1 to 6vc for Various Values of a. 

0.020 

0 .e10 
h 

0 .- 
v) 
S o--g 0.000 

t 
2 
W 

*.Ole 

-8 .e20 I I I I I 

*e .0 -10 .e 0 .e 10 .e 20 .0 

Figure A-5. Sensitivity of C1 to 6vc for Various Values of p. 

89 TR-378 



8.848 

8.828 e 

0 
v) c 
.- 

- Q> 8.888 .E 
c e 
U 

-- I I I I 

LEGEND 
a values (deg) 

-1 0 

4 0 . 9  -15.8 -18.8 S . 0  8.8 5.8 18.8 15.8 28.8 

Figure A-6. Sensitivity of C1 to  FA for Various Values of a. 

8 .84 

e 8 .82 
2 
0 .- 

U 
fk 
0 

-8 .82  v 

-8 -84 

T I I I I 

R4558 

I I I I I 
4 8  .e -18 .8 8 .e 18 .e 28 .e 

Figure A-7. Sensitivity of C1 to 6 m ~  for Various Values of a. 
R6659 

- - = -  I 

90 TR-378 



0.04 

L 
O 
v) c 
.- 

- 0.00  E 

e 
(d c 
0 .- 
v) 
S 

0- .E v 
S 

LEG END I 

2. 

I I I I I 
* e  .0 -10 .e 0 .e 10 .e 20 .e 

Figure A-8. Sensitivity of C1 to &JTA for Various Values of &A. 

0.04 

0 .02  

0 .e0 

0 \5 -0.02 

-0 -04  

R656  1 

-20 .B -10 .e 10 .e 20 .e 

R656 1 

Figure A-9. Sensitivity of C1 to ~ H T A  for Various Values of ~FC. 

91 TR-378 



e .e20 

h 

2 
0 
v) 
l= 

.- 

6 .E v 
2 
S 

U 

-8 .e28 

h 

E 
0 
v) c 
.- 

f e 
W 

- .. - -  .. 

L EG END 

-30 .e 1 0  .e -10.8 e .8 10 .e 28 .e 30 .e 

6, (deg) R6562 

Figure A-10. Sensitivity of C1 to 6~ for Various Values of a. 

L 
e .e20 

e . e m  

e .e00 

-8.810 

-30 .e -28 .e -10 .e e .e le .e 28 .e 30 .e 

6, (deg) R6563 

Figure A-1 1. Sensitivity of C1 to 6~ for Various Values of 6~c.  

I 
1 
I 
I 
I 
1 
I 
I 
I 
1 
1 
I 
I 
I 
1 

- - = -  I 

92 TR-378 



1 
IC 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

e -020 

t 
0 
t 
W 

-8 .e20 

I I I I I 

I L EG END 1 
a values (deg) 

-1 0 

-3.0 1 .e -1 .e 8 .e 1 .e 2 .e 

p (radlsec) R4564 

Figure A-12. Sensitivity of C1 to p for Various Values of a. 

L 
e .e10 

t ~ e 
W 

-3 .e05 

-8 .e10 
-1.0 -3 .5 e .e 0 . 5  

R6565 r (radlsec) 
Figure A-13. Sensitivity of C1 to r for Various Values of a. 

93 TR-378 



I 
I 
I 
I 
I 
I 
II 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPENDIX B 

SIMPLIFICATION OF THE DECISION MECHANISM 

The decision mechanism developed in [2] required pairwise comparisons of all failure 

modes implied by the set of trigger results. In the worst case, tests that compare all pairs of 

failure hypotheses would need to be performed. For very large numbers of failures, such a 

methodology is computationally infeasible. Reduction of the number of hypothesis tests for 

large problems is, therefore, desirable. However, since the pairwise methodology ensures 

large sensitivity to each failure mode, it is expected that fewer tests will result in decreased 

performance. Nevertheless, the results of [ 11 suggest that there is substantial room for FDI 

performance degradation without overall degradation of the restructurable control system of 

which the FDI algorithm is a part. 

One of the critical features of the FDI algorithm in [2] is the use of a sequential test 

strategy for the individual hypothesis tests that comprise the DM. This strategy allows the 

system to respond at a speed that is proportional to the size of a failure without compromising 

false alarm performance. Thus fixed sample size tests such as those used in the "decision- 

function" approach described in [13] are not of interest. To obtain a "proportional response" 

sequential tests or multiple window tests must be used. In either case, the DM contains 

individual tests that "fire" (i.e., pass or fail) asynchronously. Thus the DM must be able to 

"reason" about test results as they occur or, as in [ 11 and [2], provide a mapping from the set 

of possible test results to the set of final decisions. 

To establish the framework for a DM that can utilize fewer individual hypothesis tests, 

we need to define a "reasoning" methodology for the DM to use in its interpretation of test 
_. 

results. Analysis of the overall DM can then, theoretically, be obtained through analysis of all - - =  

possible combinations of test results and the resulting decisions that can be made (note thatin 
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[2] the mapping from test results to decisions was many to one, thereby allowing aggregation 
I 
I 
I 
I 
I 

of many test result combinations in the calculation of overall performance). 

The interpretation of individual test results in terms of overall decisions is a problem in 

distributed decisionmaking. Such problems are very difficult as outlined in [ 141, although 

many special cases have simple solutions [15]. For the FDI problem, the key information 

about individual tests that must be available to the DM for test interpretation is the conditional 

likelihoods defined by: 

and 

where Hj, fj indicates that failure mode j occurred with a failure "magnitude" fj. From this 

basic infomtion, Bayes rule can be applied as in [ 151 to obtain the posterior probability 

density function of fj for all j (conditioned on a specific set of test results). If the tests are 

designed properly, then the posterior distributions will indicate that only one failure mode has a 

significant probability of failure when that failure has actually occurred. 

For example, the pairwise tests in [2] can be ideally interpreted by the following: 

1. 

2. 

Test Tij failing implies that fj = 0, and for k # j, I fk I > fkiJ > 0 

Test Tij passing implies that fi = 0, and for k Z i, I fk I > fkij > 0 

Note that the tests are designed so that fj" is smaller than any other Gkl (k, 1 f j) and similarly 

for fiij. When a set of tests pass and fail, the distribution of each fk is given by the intersection 

of the real line sets implied by applying 1 and 2. Thus, if failure i occurs, and all tests Tij ($4) 

fail, then the only failure mode with a nonzero "signature-set" is fi. Equations 5-1 and 5-2 are 

simply probabilistic descriptions of the test interpretations described above. - -  

1 
I 
I 
I 
I 
I 
I 
I 

= -  I 
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Now, with this method of interpreting tests, we can envision a design process that 

creates tests and the information in the form of Eqs. 5-1,2 for each test. Analysis of all 

interpretations of all test results can then be made and from this, the mapping from individual 

test results to final failure decisions can be created. 
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